Автореферат и диссертация по медицине (14.00.06) на тему:Влияние терапии розувастатином на факторы ангиогенеза у больных хронической ишемической болезнью сердца

ДИССЕРТАЦИЯ
Влияние терапии розувастатином на факторы ангиогенеза у больных хронической ишемической болезнью сердца - диссертация, тема по медицине
АВТОРЕФЕРАТ
Влияние терапии розувастатином на факторы ангиогенеза у больных хронической ишемической болезнью сердца - тема автореферата по медицине
Семенова, Анна Евгеньевна Москва 2009 г.
Ученая степень
кандидата медицинских наук
ВАК РФ
14.00.06
 
 

Автореферат диссертации по медицине на тему Влияние терапии розувастатином на факторы ангиогенеза у больных хронической ишемической болезнью сердца

На правах рукописи

003482836

Семёнова Анна Евгеньевна

ВЛИЯНИЕ ТЕРАПИИ РОЗУВАСТАТИНОМ НА ФАКТОРЫ АНГИОГЕНЕЗА У БОЛЬНЫХ ХРОНИЧЕСКОЙ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

14.00.06. - Кардиология

1 о

! 1 'Рл п

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Москва - 2009

003482836

Работа выполнена в отделе проблем атеросклероза Института клинической кардиологии им. А.Л. Мясникова ФГУ РКНПК МЗ и СР РФ

Научный руководитель:

член-корреспондент РАМН, доктор медицинских наук, профессор

Официальные оппоненты:

доктор медицинских наук, профессор доктор медицинских наук, профессор

Ведущая организация: ФГУ

профилактической медицины МЗ и СР РФ

Защита диссертации состоится « 26 » ноября 2009 г. в 13 ч. 30 мин. на заседании диссертационного совета (Д 208.073.04) по присуждению учёной степени кандидата медицинских наук в ФГУ РКНПК МЗ и СР РФ (121552, Москва, ул. 3-я Черепковская, д. 15а).

С диссертацией можно ознакомиться в библиотеке ФГУ РКНПК МЗ и СР РФ. Автореферат разослан «_»_2009 г.

Валерий Владимирович Кухарчук

Елена Викторовна Парфёнова Геннадий Александрович Коновалов

Научно-исследовательский центр

Ученый секретарь диссертационного совета, кандидат медицинских наук

Татьяна Юльевна Полевая

СПИСОК СОКРАЩЕНИЙ

АЛТ - аланинаминотрансфераза

АПФ - ангиотензин превращающий фермент

АСБ - атеросклеротическая бляшка

ACT - аспартатаминотрансфераза

в.ч.СРБ - высокочувствительный С-реактивный белок

ВЭМ - велоэргометрия

ИБС - ишемическая болезнь сердца

ИМ - инфаркт миокарда

ИМТ - индекс массы тела

ИФА - иммуноферментный анализ

КАТ - коронароангиография

КФК - креатинфосфокиназа

КШ - коронарное шунтирование

МИБИ - 4,2-метокси-изобутил-изонитрил

мРНК - матриксная рибонуклеиновая кислота

ТБКА - транслюминальная баллонная коронарная ангиопластика

ТГ - триглицериды

ОХС - общий холестерин

ОЭКТ - однофотонная эмиссионная компьютерная томография ФК - функциональный класс

ХС ЛВП - холестерин липопротеинов высокой плотности

ХС ЛНП - холестерин липопротеинов низкой плотности

ЭКГ - электрокардиограмма

bFGF - основный фактор роста фибробластов

CCS - Canadian Cardiovascular Society

TGF - трансформирующий фактор роста

VEGF - сосудистый эндотелиальный фактор роста

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Несмотря на постоянное совершенствование методов обследования и лечения, сохраняется высокий уровень смертности от ишемической болезни сердца (ИБС), ведутся поиски и разработки новых подходов к ведению этих больных. Перспективным направлением является изучение ангиогенеза [Парфёнова Е.В. и др., 2007; Annex ВН, et al., 2005; BenShoshan J, et al., 2007; Tse HF, et al., 2007]. Известна роль неоваскуляризации в формировании коллатерального кровообращения, а также и в дестабилизации атеросклеротической бляшки (АСБ) [Berry С, et al., 2007; Chen СН, et al., 2006; Moreno PR, et al., 2006; Virmani R, et al., 2005]. Для раскрытия механизмов этого процесса необходима оценка динамики уровней факторов ангиогенеза у больных ИБС. Наличие данных о способности влиять на неоваскуляризацию с помощью медикаментозной терапии требует дальнейшего изучения механизмов действия лекарств, что может оказать влияние на тактику подбора консервативного лечения [Miura S, et al., 2007]. Существуют работы, в которых показано угнетение ангиогенеза на фоне гиперлипидемии, гипергликемии, при развитии эндотелиальной дисфункции [Chung AW, et al., 2006; Sasso FC, et al., 2005; Voisin P, et al., 2004]. Известно, что гиперлипидемия, являющаяся одним из основных факторов риска развития атеросклероза, подавляет стимулирующее действие сосудистого эндотелиалыгого фактора роста (VEGF) [Voisin P, et al., 2004] и основного фактора роста фибробластов (bFGF) [Chen СН, et al., 1997; Ruel M, et al., 2003] и замедляет артериогенез по данным ангиографии [Van Weel V, et al., 2006]. Неоспорима роль статинов в коррекции нарушений липидного обмена [Национальные клинические рекомендации ВНОК, 2009; АСС/АНА, 2007]. В настоящее время в доступной литературе крайне мало информации о влиянии терапии статинами в разных дозах на факторы ангиогенеза у больных ИБС [Blann AD, et al., 2001; Giurgea AG, et al., 2006; Trape J, et al., 2006]. Эти данные необходимы для оценки эффектов статинов и понимания механизмов их действия при ИБС.

4

Цель исследования: Изучить влияние терапии низкими, средними и высокими дозами розувастатина на факторы ангиогенеза у больных ИБС. Задачи исследования:

1. Сравнить уровень факторов ангиогенеза - сосудистого эндотелиального фактора роста (УЕОР), трансформирующего фактора роста [3 (ТСРр), основного фактора роста фибробластов (ЬРОР), эндостатина - в крови у больных ИБС и здоровых лиц.

2. Сопоставить уровень факторов ангиогенеза со степенью поражения коронарного русла по данным коронароангиографии.

3. Сопоставить уровень факторов ангиогенеза со степенью нарушения миокардиалыюй перфузии по данным радионуклидной перфузионной сцинтиграфии миокарда.

4. Изучить влияние 3-х месячной терапии розувастатином в дозах 5 мг, 10 мг и 40 мг в сутки на динамику факторов ангиогенеза у больных ИБС.

Научная новизна. Впервые в рамках одного исследования проведена оценка связи между факторами риска сердечно-сосудистых осложнений, выраженностью стенокардии напряжения, медикаментозной терапией и уровнем факторов ангиогенеза в периферической крови больных ИБС. Показано, что уровень сосудистого эндотелиального фактора роста выше у больных ИБС по сравнению со здоровыми добровольцами. Выявлено отсутствие различий в уровне факторов ангиогенеза у мужчин и женщин в постменопаузе. Установлено, что уровень эндостатина достоверно ниже у курящих, чем у некурящих больных ИБС.

Впервые в мире изучено влияние терапии розувастатином в дозах 5, 10 и 40 мг/сут на уровень факторов ангиогенеза (сосудистого эндотелиального фактора роста, трансформирующего фактора роста р и эндостатина) у больных хронической ИБС. Показано, что терапия розувастатином приводит к достоверному снижению уровня сосудистого эндотелиального фактора роста, трансформирующего фактора роста р и не влияет на уровень эндостатина. Установлено, что влияние розувастатина на данные факторы ангиогенеза не

связано с гиполипидемическим действием препарата и его воздействием на уровень высокочувствительного С-реактивного белка.

Практическая значимость. Результаты работы могут быть использованы при разработке новых методов лечения больных ИБС, в частности, терапевтического ангиогенеза, а также новых подходов к ведению этих больных с учётом процессов неоваскуляризации.

Внедрение результатов исследования: полученные результаты внедрены в научно-исследовательскую работу Института клинической кардиологии им. А.Л. Мясникова РКНПК.

Апробация диссертации состоялась 24 апреля 2009 года на заседании межотделенческой конференции Института клинической кардиологии им. А.Л. Мясникова РКНПК.

Публикации. По теме диссертации опубликовано 10 печатных работ. Материалы диссертации доложены на Всероссийской научно-практической конференции «Перспективы кардиологии в свете достижений медицинской науки», Москва, 2007г; Российском национальном конгрессе кардиологов, Москва, 2007; XV International Symposium on Atherosclerosis, Boston 2009.

Объём и структура диссертации. Диссертация состоит из введения, 4 глав, выводов, практических рекомендаций и списка литературы, включающего 452 источника. Работа изложена на 145 страницах машинописного текста, содержит 11 таблиц и 31 рисунок.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Структура исследования. Критерии включения: в исследование включены мужчины и женщины (в постменопаузе) в возрасте от 40 до 65 лет, страдающие ИБС: стенокардией напряжения I, И, III ФК (CCS) с уровнем ОХС более 5.2 ммоль/л и уровнем ХС ЛНП более 3 ммоль/л, исходно не получавшие гиполипидемической терапии. Все больные разделены на 3 группы по 30

человек в каждой в зависимости от дозы назначаемого розувастатина: 1 группа - 5 мг/сут, 2 группа - 10 мг/сут, 3 группа - 40 мг/сут. Период наблюдения составил 3 месяца. Для оценки базального уровня факторов ангиогенеза взята группа контроля - 30 здоровых добровольцев, 16 мужчин и 14 женщин, средний возраст 46 (40-58) лет с уровнем ОХС менее 5.2 ммоль/л.

Критерии исключения: уровень ОХС более 9 ммоль/л; уровень ТГ более 4.5 ммоль/л; нарушения углеводного обмена; гипотиреоз; цирроз печени; нарушение функции почек (креатинин более 150 мкмоль/л); повышение уровня печеночных трансаминаз или КФК более чем в два раза от нормальных значений; острый коронарный синдром; клинически выраженная сердечная недостаточность; воспалительные и онкологические заболевания; оперативные вмешательства или транслюминальная баллонная коронарная ангиопластика (ТБКА) давностью менее 12 месяцев; другие клинические ситуации и объективные обстоятельства, которые могли помешать больному успешно закончить исследование; приём гиполипидемической терапии в течение одного месяца до начала включения в исследование.

Клиническая характеристика обследованных лиц. Группы больных ИБС были сопоставимы по возрасту, семейному анамнезу, тяжести ИБС, индексу массы тела (ИМТ), параметрам липидного обмена, получаемой медикаментозной терапии. Группы препаратов, входящие в состав сопутствующей терапии, оставались постоянными в течение всего исследования. Клиническая характеристика обследованных групп больных представлена в таблице 1.

Для оценки уровня факторов ангиогенеза у мужчин и женщин в исследование в 1 и 3 группы включены женщины в постменопаузе. Сравнительная характеристика мужчин и женщин представлена в таблице 2. Лица контрольной группы в нашем исследовании были в среднем моложе, однако, к настоящему моменту не проводилось масштабных популяционных исследований, которые могли бы продемонстрировать различие в содержании факторов ангиогенеза в зависимости от возраста. Учитывая изложенное, мы посчитали допустимым сравнение групп.

Таблица 1. Клиническая характеристика групп больных ИБС.

Клинические Группа 1 Группа 2 Группа 3 Р

данные (5 мг) (10 мг) (40 мг)

п=30 п=30 п=30

Мужчины 20 (67%) 30 (100%) 20 (67%) 0.002

Средний возраст, 60.5 58.0 58.0 0.9

лет (53.0-64.0) (47.0-65.0) (53.0-64.0)

Отягощенный 17(57%) 9 (30%) 17(57%) 0.06

семейный анамнез

Курение в 11/8 18/1 15/10 0.2/0.01

анамнезе/в (37%/27%) (60%/3%) (50%/33%)

настоящее время

ИМТ, кг/м2 27.2 27.8 28.4 0.3

(25.7-30.5) (26.0-32.0) (26.8-33.5)

Ожирение 9 (30%) 11 (37%) 12 (40%) 0.7

Артериальная 25 (83%) 23 (77%) 30 (100%) 0.02

гипертония

Стенокардия:

IФК 17 (57%) 13 (43%) 13 (43%)

II ФК 8 (27%) 11 (37%) 12 (40%) 0.8

III ФК 5 (17%) 6 (20%) 5 (17%)

ИМ в анамнезе 3 (10%) 14 (47%) 9 (30%) 0.01

ТБКА в анамнезе 3 (10%) 11 (37%) 0 (0%) 0.0003

КШ в анамнезе 3 (10%) 7 (23%) 2 (7%) 0.1

Сопутствующая

терапия:

Аспирин 29 (97%) 30 (100%) 28 (93%) 0.4

Плавике 2 (7%) 0 (0%) 2 (7%) 0.4

Р- 18 (60%) 23 (77%) 21 (70%) 0.4

адреноблокаторы

Антагонисты 6 (20%) 6 (20%) 12 (40%) 0.1

кальция

Нитраты 5 (17%) 0 (0%) 5(17%) 0.1

Ингибиторы АПФ 19 (63%) 21 (70%) 24 (80%) 0.4

Антагонисты 3 (10%) 0 (0%) 2 (7%) 0.2

рецепторов к

ангиотензину II

Диуретики 12 (40%) 6 (20%) 9 (30%) 0.2

Таблица 2. Сравнительная характеристика мужчин и женщин.

Мужчины (п=70) Женщины (п=20) Р

Возраст, лет 59.5 (52.0-64.0) 57.5(53.5-63.5) 0.9

Курящие, % 56 25 0.02

АГ, % 83 100 0.06

ИМТ, кг/м2 27.8(25.3-31.3) 30.0(26.9-31.5) 0.2

ОХС, ммоль/л 6.4 (5.7-7.0) 6.6 (5.9-7.2) 0.3

ХС ЛНП, ммоль/л 4.2 (3.6-4.7) 4.3 (3.7-5.0) 0.4

1/П/Ш ФК СК, % 48/36/16 45/30/25 0.6

Методы исследования. Схема обследования больных ИБС представлена на рисунке 1.

Рисунок 1. Дизайн исследования.

90 больных ИБС

Клинические и инструментальные методы исследования. Обследование больных проводилось в амбулаторных условиях и включало в себя сбор жалоб, анамнеза, физикальное обследование, оценку факторов риска сердечнососудистой патологии и наследственной отягощенности, наличия сопутствующих заболеваний; ЭКГ в 12 отведениях. ВЭМ-проба проводилась на велоэргометре фирмы «Siemens» (Германия) с учётом противопоказаний и при условии подписания информированного согласия. Степень нарушения миокардиальной перфузии оценивалась при помощи ОЭКТ миокарда с 99т-Тс-МИБИ на двухдетекторной гамма-камере «SKYLight» фирмы «Philips» (Голландия) с использованием параллельного коллиматора высокого разрешения у 15 больных ИБС; исследование проводилось в 2 стадии: в покое и в сочетании с нагрузочным тестом (ВЭМ-пробой). Оценка перфузионной сцинтиграфии миокарда у других больных, включённых в исследование, была затруднена либо из-за неинформативности ВЭМ-пробы (не доведена до диагностических критериев ИБС), либо из-за исходной невозможности её проведения в связи с наличием противопоказаний, либо из-за отказа от выполнения исследования. Определялась площадь дефекта перфузии миокарда. Сопоставлялись уровни факторов ангиогенеза с площадью стабильного дефекта миокарда, отражавшего кардиосклероз, площадью преходящего дефекта перфузии, спровоцированного ВЭМ, и с площадью сохранного здорового миокарда.

Оценка степени поражения коронарного русла проводилась по данным коронароангиографии (КАГ), выполненной по методике М.Р. Judkins на ангиографической установке «Coroscop-ЗЗ» фирмы «Siemens» (Германия) у 18 больных ИБС. У этих больных приступы стенокардии напряжения сохранялись и снижали качество жизни, несмотря на антиангинальную терапию, однако, по результатам КАГ проведение эндоваскулярного и хирургического лечения оказалось либо не показанным, либо технически невозможным, либо сопряженным с высоким риском. Таким образом, была выбрана консервативная тактика ведения, что сделало возможным участие этих больных в нашем исследовании. Ангиограммы анализировались по двум методикам: 1) с учетом

10

числа пораженных магистральных артерий (1; 2; 3), имеющих сужение просвета свыше 50% но диаметру; 2) по количеству поражённых сегментов; 3) по суммарному индексу стенозов (модифицированный индекс Gensini) -учитывали степень уменьшения просвета 15 основных сегментов коронарных артерий (рекомендации Американской Ассоциации Сердца) [Austen WG, et al., 1975]: ствол левой коронарной артерии, проксимальные, средние и дистальные сегменты трех магистральных артерий, септальные, первая и вторая диагональные ветви передней нисходящей артерии, артерии тупого края, заднебоковая и задненисходящая артерии. Одним баллом оценивали сужение просвета до 50% по диаметру; 2 - на 50 - 74%; 3 - на 75 - 99% и 4 - окклюзию сосуда. Сумма баллов, полученная при оценке поражения коронарного русла, представляла суммарный коронарный индекс стенозов для каждого больного. Лабораторные методы исследования. Всем больным перед началом исследования и на фоне терапии розувастатином в течение 3-х месяцев проводили клинический и биохимический анализы крови с определением липидного профиля (ОХС, ТГ, ХС ЛНП, ХС ЛВП) и уровня в.ч.СРБ. Уровень ОХС, ТГ, ХС ЛНП и ХС ЛВП, ACT, АЛТ, КФК, креатинина, глюкозы и билирубина сыворотки крови определяли ферментативным способом на биохимическом анализаторе «ARCHITECT» фирмы «Abbott» (США). Уровень в.ч.СРБ у больных ИБС определяли методом иммунотурбидиметрии с латексным усилением с использованием набора реактивов, стандартных образцов и контрольных сывороток фирмы «Roche» (Германия) на биохимическом анализаторе фирмы «Hitachi»; определяемая концентрация 0-20 мг/л, чувствительность от 0.03 мг/л.

Факторы ангиогенеза - VEGF, TGFß, bFGF, эндостатин - определяли до лечения и через 3 месяца приёма розувастатина. У здоровых добровольцев забор крови проводился однократно для определения концентрации VEGF, bFGF, TGFß и эндостатина в сыворотке крови. Для определения VEGF, TGFß, bFGF, эндостатина кровь забиралась в пробирки с активатором свёртывания для получения сыворотки, образцы крови инкубировали 5-10 минут при комнатной температуре, центрифугировали в течение 20 минут при 1500G и

11

температуре +4°С, после чего хранили при температуре -70°С. Определение уровней факторов ангиогенеза проводили методом иммуноферментного анализа ELISA с использованием диагностических наборов: Human VEGF, Multispecies TGF-ßl, Human FGF basic фирмы «Biosource» (Бельгия) и Human Endostatin фирмы «R&D Systems» (США). Определяемые концентрация и чувствительность: 0-1500 пг/мл и от 5 пг/мл для VEGF, 0-1000 пг/мл и от 7 пг/мл для bFGF, 0-2000 пг/мл и от 15.6 пг/мл для TGF-ßl, 0-10 нг/мл и от 0.063 нг/мл для эндостатина соответственно.

Статистический анализ. Статистическую обработку результатов исследования

проводили в соответствии со стандартными методами вариационной

статистики с применением прикладных программ Statistica для Windows 6.0, а

также пакета статистического анализа программы Excel 2000 (Microsoft) и

программы MedCalc. Для проверки нормальности распределения

количественных признаков использовали критерии Колмогорова-Смирнова и

Шапиро-Уилка. Достоверность различий всех параметров количественных

признаков определяли с помощью парных и непарных методов анализа для

непараметрических величин по U тесту Манн-Уитни для независимых групп и

по Вилкоксону для зависимых параметров, параллельно для параметрических

величин проводился анализ по t-критерию Стьюдента. Достоверность различий

параметров качественных признаков оценивалась с помощью анализа по

Фишеру. Для оценки достоверности различия признаков трёх групп

(множественное сравнение) использовался тест Краскела-Уоллиса и медианный

„2

тест для количественных показателей и тест % для качественных показателей. Для оценки взаимосвязи количественных признаков использовался метод ранговой корреляции по Спирмену. Выполнен расчет 95% ДИ для коэффициента корреляции. Проводилось определение разделяющего критерия при помощи анализа ROC кривых. Для всех видов анализа статистически достоверными считались значения при р<0.05. В таблицах и рисунках полученные значения представлены в виде Me (LQ-UQ), где Me - медиана, LQ-UQ — межквартильный размах.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Уровень факторов ангиогенеза - УЕСЕ, ТвГР, ЬЕСЕ, эндостатина - в крови у здоровых лиц и больных ИБС. Нами показано, что уровень УЕСБ у больных ИБС достоверно выше, чем у здоровых добровольцев - 331.6 (163.3501.3) пг/мл и 219.5 (115.7-297.7) пг/мл соответственно, а уровень Тврр у больных ИБС ниже, чем у здоровых добровольцев - 4.1 (3.4-4.9) нг/мл и 5.7 (2.4-6.9) нг/мл соответственно (рис. 2). Через 3 месяца терапии розувастатином различия в уровне ТОРР между больными ИБС и здоровыми добровольцами стали достоверными - 3.2 (2.6-4.0) нг/мл и 5.7 (2.4-6.9) нг/мл, р=0.001; также сохранялись различия по уровню УЕОР - 267.7 (136.1-449.4) пг/мл и 219.5 (115.7-297.7) пг/мл соответственно, р=0.02.

Рисунок 2. Уровень УЕСЕ и ТСРр у больных ИБС и здоровых добровольцев.

□ здоровые Шбольные

УЕОР, пг/мл

Т<ЗРР, нг/мл

В настоящее время имеющиеся в литературе данные по уровню Тврр

неоднозначны. В исследовании Во£ауас-81апо]еую N. ег а1. уровень Тврр был

выше у больных ИБС (р<0.01), по сравнению со здоровыми добровольцами

[Во§ауас-81апо]еУю К, е1 а1., 2003]. Отсутствие значимого различия в уровне

13

TGFß у больных с ИБС и без ИБС, а также отсутствие значимости TGFß как предиктора главных неблагоприятных сердечно-сосудистых событий за 2 года наблюдения было показано в работе Schaan BD, et al. [Schaan BD, et al., 2007]. В работе Tashiro H, et al. напротив, y больных ИБС уровень TGFß был ниже (р<0.01), чем у здоровых добровольцев [Tashiro H, et al., 1997]. Причём в группе больных с низким уровнем TGFß (менее 6 нг/мл) прогноз по выживаемости без сердечно-сосудистых событий и без коронарных вмешательств оказался хуже (р<0.05), по сравнению с группой больных с высоким уровнем TGFß (от 6 нг/мл и выше), а прогноз по общей выживаемости и по выживаемости без инфаркта миокарда (ИМ) был сопоставим в обеих группах [Tashiro H, et al., 2002].

В отношении VEGF мнения исследователей совпадают и подтверждают полученные нами результаты: уровень VEGF выше у больных ИБС по сравнению со здоровыми добровольцами [Blann AD, et al, 2001,2002; Nakajima К, et al., 2004; Trape J, et al., 2006; Yin R, et al., 2000]. При сопоставлении в нашей работе уровня VEGF у больных ИБС с контрольной группой проведён ROC анализ (анализ точности диагностического метода), который подтвердил наличие разделяющего критерия, уровня VEGF (более 389.52 пг/мл), который с чувствительностью 42.2% говорит о наличии ИБС. В недавно завершившемся 13-ти летнем наблюдении показана достоверная, независимая от других факторов риска (возраст, пол, отягощённый семейный анамнез по ИБС, курение, артериальная гипертония, уровень ОХС/ХС ЛВП, сахарный диабет) связь между повышенным уровнем VEGF и риском смерти от ИБС [Eaton СВ, et al., 2008]. В работе Trape J, et al. уровень VEGF достоверно различался в основной группе, где уровень холестерина изначально был более 6.1 ммоль/л, по сравнению с контрольной группой с уровнем холестерина менее 5.1 ммоль/л, также была выявлена корреляция между уровнем VEGF, липидным спектром и уровнем СРБ [Trape J, et al., 2006].

Уровень эндостатина в нашей работе у больных ИБС составлял 168.6 (152.1-183.2) нг/мл, что значимо не отличалось от уровня эндостатина 181.9 (149.4-202.0) нг/мл у здоровых добровольцев (р=0.4). Данные других исследователей противоречивы. Показано, что уровень эндостатина сыворотки

14

крови, взятой из коронарного синуса, выше у больных ИБС, чем у пациентов с непоражёнными коронарными артериями [Mitsuma W, et al., 2007]. У больных, которым проводилась открытая операция на сердце, уровень эндостатина в сыворотке крови и перикардиальной жидкости был меньше, а уровень VEGF был выше при наличии ИБС [Liou JY, et al., 2006].

В нашей работе уровень bFGF как у больных ИБС, так и у здоровых добровольцев оказался ниже чувствительности метода определения. Низкий уровень bFGF периферической крови может быть обусловлен тем, что данный фактор не является секреторным белком. Показано, что гены bFGF не закодированы для секреторного сигнального пептида и поэтому считается, что bFGF находится внутри клетки и может высвобождаться при её повреждении [Mignatti Р, et al., 1991]. В исследовании Hasdai D, et al. уровень bFGF был ниже чувствительности метода у здоровых добровольцев, по определялся у 45% пациентов со стенокардией напряжения и у 25% больных с перенесенным неосложнённым ИМ [Hasdai D, et al., 1997]. В работе Katinioti АА, et al. при оценке уровня bFGF у больных стабильной ИБС на фоне коронарной ангиопластики уровень bFGF исходно у больных ИБС составлял 4.4±1.0 пг/мл, что было достоверно выше, по сравнению с уровнем 0.8±0.1 пг/мл у здоровых добровольцев. Через 24 часа, 3 и 6 месяцев уровень bFGF снизился и составлял 3.2±0.6 пг/мл, 1.7±0.3 пг/мл и 2.7±0.6 пг/мл соответственно (р<0.05) [Katinioti АА, et al., 2002]. В нашем исследовании при определении уровня bFGF чувствительность метода была от 7.0 пг/мл, что не позволило нам выявить уровень bFGF ниже данного значения.

Значимого влияния таких факторов риска, как пол, возраст, отягощённый семейный анамнез, ожирение, артериальная гипертония, инфаркт миокарда в анамнезе; перенесенной коронарной ангиопластики и операции коронарного шунтирования в анамнезе; выраженности стенокардии напряжения, а также концентрации ОХС, ХС ЛНП, ХС ЛВП, ТГ, в.ч.СРБ на уровень VEGF, TGF0 и эндостатина нами обнаружено не было (таб. 3,4, 5).

Таблица 3. Сопоставление уровня УЕвР, ТСР|! и эндостатнна с наличием факторов риска сердечно-сосудистых осложнений у 90 больных ИБС.

Фактор УБвР, пг/мл твгр, нг/мл Эндостатин, нг/мл

Пол мужчины п=70 340.2 (149.1-505.5) 4.1 (3.5-4.8) 170.3 (154.3-183.6)

женщины п=20 313.3 (1782-410.8) 4.0 (3.4-5.2) 167.5 (152.1-179.7)

Р 0.6 0.7 0.5

Возраст, лет Корреляция г=0.1 р=0.37 г=0.003 р=0.98 г=0.29 р=0.16

Отягощенный семейный анамнез Да п=43 345.6 (149.1-537.3) 4.3 (3.4-5.2) 167.2 (152.1-183.0)

Нет п=47 327.1 (171.4-417.9) 4.0 (3.4-4.8) 169.5 (151.1-183.3)

Р 0.5 0.3 1.0

Курение в настоящее время Да п=19 244.2 (136.1-446.9) 3.8 (3.4-5.9) 163.1 (143.7-167.7)

Нет п=71 343.5 (186.9-503.6) 4.1 (3.5-4.8) 172.8 (154.3-183.6)

Р 0.2 1.0 0.05

Курение в анамнезе (ранее и в настоящее время) Да п=44 310.4 (142.8-502.5) 4.0 (3.5-5.2) 167.0 (148.4-175.4)

Нет п=46 344.6 (199.3-476.2) 4.1 (3.4-4.8) 175.6 (152.1-190.3)

Р 0.3 0.9 0.06

Ожирение Да п=32 311.6 (146.1-414.3) 3.9 (3.1-4.6) 165.3 (149.0-181.3)

Нет п=58 373.1 (171.4-512.4) 4.3 (3.5-5.5) 170.8 (156.4-183.2)

Р 0.3 0.14 0.3

Артериальная гипертония Да п=78 326.8 (149.1-501.3) 4.1 (3.4-4.8) 169.1 (155.1-183.3)

Нет п=12 344.7 (235.6-513.6) 4.1 (3.6-5.7) 153.8 (142.6-183.0)

Р 0.6 0.4 0.3

Таблица 3. Сопоставление уровня УЕвЕ, ТСЕр и эндостатина с наличием факторов риска сердечно-сосудистых осложнений у 90 больных ИБС (продолжение).

Фактор УБОР, иг/мл тсрр, нг/мл Эндостатин, нг/мл

Перемежающаяся хромота Да п=3 405.8 (382.4-476.2) 7.0 (4.0-7.4) 167.7 (134.2-183.3)

Нет п=87 326.4 (153.1-503.6) 4.1 (3.4-4.8) 169.0 (152.1-183.2)

Р 0.4 0.06 0.6

ИМ в анамнезе Да п=26 313.6 (117.2-436.4) 4.0 (3.5-5.1) 175.8 (163.6-189.0)

Нет п=64 337.6 (192.2-508.9) 4.1 (3.4-4.8) 167.1 (150.5-182.9)

Р 0.2 0.9 0.06

ТБКА в анамнезе Да п=14 315.6 (149.1-503.6) 4.3 (3.7-5.7) 171.2 (155.1-183.6)

Нет п=76 331.6 (167.4-499.8) 4.1 (3.4-4.8) 168.4 (152.1-183.1)

Р 0.7 0.3 0.8

КШ в анамнезе Да п=12 399.4 (224.3-675.2) 4.1 (3.7-4.7) 166.4 (149.6-182.1)

Нет п=78 323.1 (163.3-476.2) 4.1 (3.4-5.0) 168.6 (152.1-183.2)

Р 0.3 0.7 0.7

Таблица 4. Сопоставление уровня УЕСЕ, ТСЕР и эндостатина с выраженностью стенокардии напряжения у 90 больных ИБС.

Стенокардия напряжения УЕвР, пг/мл ТСрр, нг/мл Эндостатин, нг/мл

1ФК п=43 341.3(193.1-498.2) 3.9 (3.4-5.4) 166.9(145.1-188.1)

IIФК п=31 244.2(112.5-512.4) 3.9(3.3-4.6) 173.4 (159.4-183.2)

III ФК п=16 400.8 (268.1-580.9) 4.8 (4.2-5.4) 171.0 (157.6-178.5)

Р 0.15 0.08 0.5

Таблица 5. Связь между уровнем ОХС, ХС ЛНП, ХС ЛВП, ТГ, в.ч.СРБ и концентрацией факторов ангиогенеза (УЕвР, ТвГр, эндостатина) у 90 больных ИБС.

Фактор VEGF, пг/мл TGFP, нг/мл Эндостатин, нг/мл

ОХС, ммоль/л г= - 0.03 р=0.8 г= - 0.1 р=0.4 г=0.03 р=0.8

ХС ЛНП, ммоль/л г=0.001 р=1.0 г= - 0.2 р=0.1 г= - 0.03 р=0.8

ХС ЛВП, ммоль/л г=-0.1 р=0.4 г= - 0.04 р=0.7 г=0.04 р=0.7

ТГ, ммоль/л г=0.07 р=0.5 r=0.l р=0.2 г= - 0.05 р=0.7

в.ч.СРБ, мг/л г=0.1 р=0.2 г=0.1 р=0.4 г=0.1 р=0.3

Нами установлено, что у некурящих больных (п=46) уровень эндостатина был выше, чем у больных, имевших анамнез курения (куривших в прошлом и курящих в настоящем) (п=44) - 175.6 (152.1-190.3) нг/мл и 167.0 (148.4-175.4) нг/мл соответственно (р=0.06), причём достоверно выше по сравнению с теми, кто курил на момент включения в исследование (п=19) - 175.6 (152.1-190.3) нг/мл и 163.1 (143.7-167.7) нг/мл соответственно (р=0.03), что согласуется с данными о способности никотина стимулировать ангиогенез, а также опухолевый рост и прогрессирование атеросклероза (усиление неоваскуляризации и роста АСБ) [Heeschen С, et al., 2001]. Уровни VEGF и TGFp не отражали наличия курения в анамнезе, что подтверждается в опубликованных данных по VEGF [Belgore FM, et al., 2000].

Существуют данные о способности ряда лекарственных препаратов влиять на факторы ангиогенеза [Miura S, et al., 2007], к ним относятся ингибиторы АПФ [Donnini S, et al., 2006], блокаторы рецепторов к ангиотензину II [Bian С, et al., 2007; Sadamatsu К, et al., 2006], гепарин [Pyda M, et al., 2006], аспирин [Gerrah R, et al., 2004; Redondo S, et al., 2007], статины [Blarrn AD, et al., 2001; Boodhwani M, et al., 2006; Giurgea AG, et al., 2006; Redondo S, et al., 2007; Trape J, et al., 2006]. Нами не выявлено достоверной разницы в уровне VEGF, TGFp и эндостатина между лицами, получавшими и не получавшими p-адреноблокаторы, антагонисты кальция, нитраты, ингибиторы АПФ, диуретики (таб. 6).

Таблица 6. Сопоставление уровня УЕвР, ТСРр и эндостатииа с

получаемой медикаментозной терапией у 90 больных ИБС.

Лекарственные препараты УЕСР, пг/мл ТСБр, нг/мл Эндостатин, нг/мл

Аспирин Да п=87 327.1 (153.1-501.3) 4.1 (3.4-4.8) 169.0 (152.1-183.2)

Нет п=3 405.8 (244.2-791.0) 4.9 (3.5-7.4) 167.7 (136.3-193.6)

Р 0.4 0.3 0.8

Плавике Да п=4 471.5 (325.0-664.1) 5.3 (42-6.6) 180.6 (152.0-196.5)

Нет п=86 326.8 (153.1-498.2) 4.1 (3.4-4.8) 168.6 (152.1-183.0)

Р 0.2 0.1 0.6

Р- адреноблокаторы Да п=62 321.5 (149.1-436.4) 4.1 (3.5-4.8) 167.9 (155.1-181.4)

Нет п=28 400.1 (200.2-546.4) 3.9 (3.2-5.3) 171.2 (143.4-184.4)

Р 0.3 0.7 0.8

Антагонисты кальция Да п=24 402.4 (1412-553.4) 4.0 (3.1-5.6) 173.1 (167.7-186.8)

Нет п=6б 311.7 (186.9-498.2) 4.1 (3.5-4.8) 165.8 (149.9-183.0)

Р 0.5 0.9 0.06

Нитраты Да п=10 344.6 (191.3-467.0) 4.6 (3.9-5.8) 170.3 (164.1-190.3)

Нет п=80 331.6 (158.2-502.5) 4.1 (3.4-4.8) 167.9 (152.1-182.9)

Р 0.9 0.06 0.5

Ингибиторы АПФ Да п=64 318.2 (146.4-482.6) 4.0 (3.4-4.8) 169.1 (158.7-183.2)

Нет п=26 380.5 (244.2-512.4) 4.1 (3.5-5.5) 159.7 (143.7-183.2)

Р 0.2 0.5 0.2

Антагонисты рецепторов к ангиотензину II Да п=5 501.3 (306.7-512.4) 4.5 (3.5-4.7) 173.4 (151.0-190.3)

Нет п=85 327.1 (163.3-476.2) 4.1 (3.4-4.9) 168.1 (152.1-183.0)

Р 0.4 0.8 1.0

Диуретики Да п=27 405.8 (163.3-519.5) 3.9 (3.1-4.8) 167.0 (151.0-179.4)

Нет п=63 319.9 (153.1-462.7) 4.1 (3.5-5.0) 171.3 (152.1-183.3)

Р 0.3 0.2 0.5

Уровень факторов ангиогенеза и степень поражения коронарного русла по данным коронароангиографии. При сопоставлении уровней факторов ангиогенеза VEGF, TGF0 и эндостатина с выраженностью поражения коронарного русла у 18 больных ИБС выявлена достоверная положительная корреляция уровня VEGF с суммарным коронарным индексом стенозов (модифицированным индексом Gensini), учитывающим количество поражённых артерий и степень их сужения (г=0.58, р=0.01). В нашей работе суммарный индекс стенозов также положительно коррелировал с тяжестью ФК стенокардии (г=0.57, р=0.013) у этих больных. Нужно отметить, что использование VEGF для оценки тяжести поражения коронарного русла затруднено в связи с тем, что уровень данного фактора в крови во многом определяется наличием ишемии миокарда [Pugh CW, et al., 2003]. В покое у больных ИБС с умеренно выраженным коронарным атеросклерозом уровень VEGF может не отличаться от такового у здоровых лиц [Nakajima К, et al., 2004]. В работе Nakajima К, et al. при ИБС выявлен достоверно более высокий уровень данного фактора (р<0.05) в группе с двух- и трёхсосудистым поражением со стенозами от 75%, по сравнению с группой с однососудистым поражением от 75% либо менее и контрольной группой (здоровые добровольцы). Таким образом, сделан вывод, что уровень VEGF в плазме крови может ассоциироваться только с выраженной коронарной ишемией при множественном поражении коронарного русла [Nakajima К, et al., 2004]. В работе Chung NA, et al. отсутствие корреляции между поражением коронарного русла и уровнем VEGF объясняется тем, что именно ишемия вызывает увеличение его концентрации, то есть, даже у больных с многососудистым поражением коронарного русла в условиях покоя ишемия миокарда может не наблюдаться [Chung NA, et al., 2003]. Повышенный уровень VEGF может говорить о критическом поражении коронарного русла и рассматриваться как показание к реваскуляризации у больных с установленной ИБС [Kucukardali Y, et al., 2008].

Уровень факторов ангиогенеза и степень нарушения миокардиальной перфузии по данным радионуклидной перфузионной сцинтиграфии миокарда. Нами выявлена тенденция к положительной корреляции между площадью преходящего дефекта перфузии и уровнем VEGF (г=0.49, р=0.06б), что позволяет предположить наличие связи между выраженностью ишемии и степенью повышения уровня VEGF. Причём площадь преходящего дефекта перфузии миокарда по данным ОЭКТ миокарда с 99т-Тс-МИБИ в нашем исследовании положительно коррелировала с суммарным коронарным индексом стенозов (г=0.65, р=0.04), а также с количеством поражённых сегментов коронарных артерий (г=0.74, р=0.015) по данным КАТ. Однако сомнительно использование VEGF как маркёра ишемии, так как его повышение может быть вызвано ишемией других органов [Makin AJ, et al., 2003], а также наблюдаться в подострой фазе инфаркта миокарда [Suzuki H, et al., 2003]. Остаётся не до конца ясным, является ли высокий уровень VEGF у больных ИБС положительным или отрицательным прогностическим признаком [Sandhofer A, et al., 2009]. С одной стороны, его повышение свидетельствует о стимуляции ангиогенеза и формировании коллатерального сосудистого русла, с другой, - о наличии значимой ишемии миокарда. В 2008 году Biselli РМ, et al. опубликовали результаты работы, целью которой было выяснить, влияют ли полиморфизмы кодирующего VEGF гена, определяющие экспрессию данного белка, на тяжесть ИБС и ассоциируются ли они с количеством поражённых артерий и степенью стенозов по данным КАТ. Показано, что генотип VEGF -2 578 чаще встречался у больных с трёхсосудистым поражением коронарного русла (р=0.008). Сделано заключение, что -2 578 полиморфизм VEGF ассоциируется с тяжестью ИБС, предположительно, из-за снижения экспрессии VEGF, таким образом, возможна протективная роль VEGF при атеросклерозе [Biselli РМ, et al., 2008]. Можно предположить, что для пациентов с относительно сниженной способностью к компенсации кровообращения при поражении коронарного русла, что, в конечном счете, проявляется развитием некроза миокарда, более характерно снижение (а, возможно, отсутствие компенсаторного повышения) уровня VEGF на фоне ишемии миокарда [Lin ТН,

21

е1 а1., 2005]. Существуют данные о том, что уровень эндостатина, но не УЕОИ, в перикардиальной жидкости обратно связан с развитием коллатералей у больных ИБС [РапсЬа! VII, е1 а1., 2004]. Так же показано, что уровень эндостатина, определявшийся в крови, взятой из коронарного синуса и полости левого желудочка, был выше при наличии выраженных стенозов и слабо развитых коллатералях и ниже при умеренных стенозах и хорошо развитых коллатералях [Мкхита V/, й а1., 2007]. Авторы предполагают, что ингибитор ангиогенеза эндостатин может локально модулировать формирование коронарных коллатералей [Мкзита \У, е1 а1., 2007; РапсЬа1 VII, й а1., 2004]. В противоположность этому в другом исследовании было показано, что уровень УЕСР, а не эндостатина сыворотки крови отражает степень развития коллатералей у больных ИБС [Ь'юи Й а1., 2006]. В нашей работе не выявлена связь между тяжестью поражения коронарного русла, показателями миокардиальной перфузии по данным радиоизотопного исследования и уровнем эндостатина. Однако нами установлено наличие слабой положительной связи между уровнем УЕОР и уровнем эндостатина (г=0.2, р=0.05).

Влияние 3-х месячной терапии розувастатином в дозах 5 мг, 10 мг и 40 мг в сутки на динамику факторов ангиогенеза у больных ИБС. Исходно степень выраженности нарушений липидного обмена и уровень в.ч.СРБ были сопоставимы во всех трёх группах больных. Результаты нашей работы подтверждают наличие дозозависимого гиполипидемического эффекта статинов и их влияния на уровень в.ч.СРБ (таб. 7), однако, не выявлена прямая связь между динамикой показателей липидного обмена и факторов ангиогенеза на фоне терапии статинами.

Таблица 7. Динамика уровня липидов крови н в.ч.СРБ у больных ИБС до и после 3-х месяцев терапии розувастатином.

Розувасгатин 5 мг 10 мг 40 мг

Уровень показателей До После Р До После Р До После Р

ОХС, ммоль/л 5.9 (5.3-6.8) 4.5 (3.8-5.0) <0.0001 6.6 (5.9-7.0) 4.2 (3.9-4.9) <0.0001 6.7 (6.1-7.4) 3.8 (3.4-4.3) <0.0001

ХС ЛНП, ммоль/л 3.9 (3.4-4.6) 2.3 (1.9-3.0) <0.0001 4.3 (3.6-4.6) 2.2 (1.8-3.1) <0.0001 4.4 (4.1-5.1) 1.9 (1.5-2.4) <0.0001

ХС ЛВП, ммоль/л 1.4 (1.1-1.6) 1.4 (1.1-1.6) >0.05 1.1 (1.0-1.3) 1.2 (0.9-1.4) >0.05 1.2 (1.1-1.4) 1.2 (1.1-1.5) >0.05

ТГ, ммоль/л 1.4 (1.0-2.2) 1.2 (1.0-2.0) >0.05 2.5 (1.6-3.2) 1.6 (1.1-2.2) =0.0003 1.7 (1.2-2.8) 1.2 (0.9-1.9) =0.0004

в.ч.СРБ, мг/л 1.6 (0.9-2.7) 1.6 (1.2-2.5) >0.05 2.3 (1.0-4.7) 1.4 (0.7-2.6) =0.004 2.5 (1.0-6.0) 0.8 (0.1-3.1) =0.001

Уровни факторов ангиогенеза были сопоставимы во всех трёх группах больных как исходно, так и через 3 месяца терапии розувастатином. На фоне терапии розувастатином произошло достоверное снижение уровня УЕйР на 19% в 1 группе (с 420.8 (244.2-537.3) пг/мл до 314.0 (215.2-453.3) пг/мл) и на 22% во 2 группе (с 338.7 (149.1-503.6) пг/мл до 267.7 (154.5-365.7) пг/мл) (рис. 3). В 3 группе исходно отмечался выраженный разброс показателя уровня УЕОР, что стало причиной исключения данной группы больных из общего анализа. На фоне терапии розувастатином произошло достоверное снижение уровня Тйрр на 23% в 1 группе (с 4.1 (3.5-4.7) нг/мл до 3.3 (2.4-4.2) нг/мл), на 26% во 2 группе (с 4.1 (3.5-5.0) нг/мл до 3.0 (2.6-3.9) нг/мл) и на 18% в 3 группе (с 3.9 (3.1-4.9) нг/мл до 3.4 (2.4-4.1) нг/мл) (рис. 4).

Рисунок 3. Динамика уровня VEGF на фоне терапии розувастатином.

Р<0.001

Р=0.001

о

ш >

5

10 мг

В ДО

□ после

Наши результаты по снижению уровня VEGF на фоне приёма розувастатина подтверждают данные, полученные ранее для других статинов: флува-, права-, симва- и аторвастатина [Blann AD, et al., 2001; Boodhwani M, et al., 2006; Giurgea AG, et al., 2006; Trape J, et al., 2006].

Рисунок 4. Динамика уровня TGFP на фоне терапии розувастатином.

Р=0.0001

РС0.0001

Р=0.004

10 мг 40

а до □ после

мг

Данные по TGF(3 противоречивы. Интересно, что в исследовании Sadamatsu К, et al. терапия симвастатином в дозе 5 мг/сут в течение 8 недель у 10 больных ИБС не привела к изменению уровня TGFP, хотя отмечалось снижение (р=0.009) уровня макрофагального колониестимулирующего фактора [Sadamatsu К, et al., 2006]. В другом исследовании у больных с гиперхолестеринемией терапия правастатином в дозе 40 мг/сут в течение 6 недель привела к повышению уровня TGFP плазмы крови не зависимо от гиполипидемического эффекта. Установлено и увеличение экспрессии мРНК и продукции TGFp в культуре изолированных из крови больных с гиперхолестеринемией моноцитов в присутствии правастатина, причём добавление мевалоната нивелировало этот эффект in vitro [Porreca Е, et al., 2002]. Этим данным противоречат результаты работ, в которых на экспериментальных моделях показано подавление экспрессии мРНК TGFP ловастатином, что также нивелировалось добавлением мевалоната [Kim SI, et al., 2000; Song CY, et al., 2008]. Авторы предполагают, что снижение экспрессии TGFP на фоне ловастатина может говорить о наличии антифибротических свойств [Song CY, et al., 2008]. В нашей работе действие

розувастатина на уровень TGFp не зависело от дозы препарата, а скорее определялось исходной степенью повышения уровня фактора в крови. При оценке процента снижения (Д%) выявлена достоверная корреляция между исходным уровнем TGFP и степенью его снижения через 3 месяца на фоне приёма розувастатина в дозах 5 и 40 мг/сут (г=0.38, р=0.04 и г=0.58, р=0.001 соответственно) и тенденция к положительной корреляции на фоне приёма в дозе 10 мг/сут (г=0.33, р=0.07). В отличие от TGFp, при анализе динамики VEGF на фоне терапии розувастатином достоверная связь между исходным уровнем фактора и степенью его снижения отсутствовала. Затруднение оценки динамики VEGF объясняется тем, что данный фактор является динамическим показателем и достаточно быстро реагирует в ответ на ишемию, что продемонстрировано в исследовании, где регистрировалось достоверное повышение уровня VEGF через 2-6 часов после возникновения ангинозного приступа, спровоцированного проведением ВЭМ-пробы [Adams V, et al., 2004].

Таким образом, полученные нами данные согласуются с результатами других работ и могут иметь значение при дальнейшем изучении процессов неоваскуляризации у больных ИБС, в том числе, под влиянием гиполипидемической терапии статинами и, в частности, розувастатином.

выводы

1. У больных ИБС уровень УЕСБ в периферической крови достоверно выше, уровень ТСрр ниже, а уровень эндостатина достоверно не отличается от уровня данных показателей у здоровых добровольцев.

2. Отсутствуют достоверные различия в уровне УБвР, 'ГОР[] и эндостатина в периферической крови у мужчин и женщин в постменопаузе.

3. Отсутствует корреляция между уровнями ОХС, ХС ЛНП, ХС ЛВП, ТГ, в.ч.СРБ и уровнями УЕОБ, ТСБр и эндостатина в крови больных ИБС.

4. Выявлена прямая связь между суммарным коронарным индексом стенозов (модифицированный индекс Сегшш), площадью преходящего дефекта перфузии миокарда (ОЭКТ миокарда с 99т-Тс-МИБИ) и уровнем \TiGF у больных ИБС.

5. Терапия розувастатином в независимости от шполипидемического действия препарата и его влияния на в.ч.СРБ приводит к достоверному снижению уровня УЕОБ, ТОР|3 и не влияет на уровень эндостатина.

6. Приём розувастатина в дозе 5 и 10 мг/сут в течение трёх месяцев приводит к снижению уровня УЕвЕ на 19% и 22% соответственно. На фоне приёма розувастатина в дозах 5, 10 и 40 мг/сут в течение трёх месяцев отмечается снижение уровня Тврр на 23%, 26% и 18% соответственно.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Результаты настоящего исследования рекомендуется использовать при проведении научно-исследовательских работ, направленных на разработку новых подходов к лечению больных ИБС путём воздействия на факторы ангиогенеза.

СПИСОК ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ РАБОТ

1. И.В. Сергиенко, А.Е. Семёнова, В.П. Масенко, Л.И. Хабибуллина, С.А. Габрусенко, В.В. Кухарчук, Ю.Н. Беленков. Влияние реваскуляризации миокарда на динамику сосудистого эндотелиального и трансформирующего факторов роста у больных ишемической болезнью сердца // Кардиоваскулярная терапия и профилактика. - 2007. - №5. - с. 12-18.

2. И.В. Сергиенко, А.Е. Семёнова, В.П. Масенко, М.В. Ежов, С.А. Габрусенко, В.В. Кухарчук, Ю.Н. Беленков. Влияние терапии статинами на динамику сосудистого эндотелиального фактора роста и фактора роста фибробластов у больных ишемической болезнью сердца // Кардиология. -2007. - №8. - с. 4-7.

3. А.Е. Семёнова, И.В. Сергиенко, В.П. Масенко, С.А. Габрусенко, В.В. Кухарчук, Ю.Н. Беленков. Влияние терапии розувастатином и реваскуляризации миокарда на процессы ангиогенеза у больных ишемической болезнью сердца // Кардиология. - 2007. - №11. - с. 62-66.

4. А.Е. Семёнова. Влияние терапии розувастатином и эндоваскулярной реваскуляризации миокарда на факторы роста ангиогенеза у больных ишемической болезнью сердца // Российский национальный конгресс кардиологов. Постерный доклад. Материалы конгресса. 9-11 октября 2007 г. - Москва. - с. 277 (тезис №0707) // Кардиоваскулярная терапия и профилактика. - 2007. - №6(5). - с. 277.

5. Статины в современной кардиологической практике. Монография под редакцией Ю.Н. Беленкова, И.В. Сергиенко, A.A. Лякишева, В.В. Кухарчука (главы). - Москва. - 2007. - с. 26-44.

6. А.Е. Семёнова, И.В. Сергиенко, С.А. Габрусенко. Объективные методы оценки коронарного ангиогенеза // Кардиология. - 2008. - №6. - с. 19-23.

7. А.Е. Semenova, I.V. Sergienko, V.P. Masenko, M.V. Ezhov, S.A. Gabrusenko,

V.V. Kukharchuk, Y.N. Belenkov. The influence of rosuvastatin therapy and

28

percutaneous coronary intervention on angiogenic growth factors in coronary artery disease patients // Acta Cardiol. - 2009. - №64 (3). - c. 405-9.

8. A.E. Semenova, I.V. Sergienko, V.P. Masenko, V.V. Kukharchuk. The influence of high and low rosuvastatin doses on angiogenic factors serum levels in coronary artery disease patients // XV International Symposium on Atherosclerosis. - Boston 2009, June 14-18 - Atherosclerosis Supplements 2009. - Vol. 10. - Issue 2 (Abstract P970).

9. И.В. Сергиенко, В.П. Масенко, A.E. Семенова, C.A. Габрусенко, В.Г. Наумов, Ю.Н. Беленков. Влияние реваскуляризации миокарда на динамику факторов ангиогенеза у больных ИБС // Кардиология. - 2009. -№ . - с. .

10.И.В. Сергиенко, А.Е. Семёнова, В.П. Масенко, СА. Габрусенко, В.В. Кухарчук, Ю.Н. Беленков. Влияние различных доз статинов на коронарный ангиогенез у больных ИБС // Кардиоваскулярная терапия и профилактика. - 2009. - №5. - с. 22.

Подписано в печать:

14.10.2009

Заказ № 2720 Тираж - 100 экз. Печать трафаретная. Типография «11-й ФОРМАТ» ИНН 7726330900 115230, Москва, Варшавское ш., 36 (499) 788-78-56 www.autoreferat.ru

 
 

Оглавление диссертации Семенова, Анна Евгеньевна :: 2009 :: Москва

СПИСОК СОКРАЩЕНИЙ.

ВВЕДЕНИЕ.

Глава 1. ОБЗОР ЛИТЕРАТУРЫ.

1.1. Ангиогенез как новый подход к ведению больных ИБС.

1.2. Механизмы неоваскуляризации при ИБС.

1.3. Роль факторов роста в неоваскуляризации зрелого миокарда.

1.4. Терапевтический ангиогенез.

1.5. Влияние статинов на неоваскуляризацию при ИБС.

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. Клиническая характеристика больных.

2.2. Клинические и инструментальные методы исследования.

2.3. Лабораторные методы исследования.

2.4. Статистическая обработка результатов исследования.

Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.

3.1. Уровень факторов ангиогенеза - УЕвР, ТОБр, ЬГвГ, эндостатина - в крови у здоровых лиц и у больных ИБС.

3.2. Уровень факторов ангиогенеза и степень поражения коронарного русла по данным коронароангиографии.

3.3. Уровень факторов ангиогенеза и степень нарушения миокардиальной перфузии по данным радионуклидной перфузионной сцинтиграфии миокарда.

3.4. Влияние 3-х месячной терапии розувастатином в дозах 5 мг, 10 мг и 40 мг в сутки на динамику факторов ангиогенеза у больных ИБС.

3.5. Оценка переносимости больными ИБС 3-х месячной терапии розувастатином в дозах 5, 10 и 40 мг в сутки.

Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

ВЫВОДЫ.

 
 

Введение диссертации по теме "Кардиология", Семенова, Анна Евгеньевна, автореферат

В связи с большой распространённостью ИБС среди населения, улучшение качества и продолжительности жизни этих больных является одной из приоритетных задач здравоохранения [1, 8, 9, 12, 16]. Поскольку, несмотря на постоянное совершенствование методов обследования и лечения, сохраняется высокий уровень смертности от данного заболевания, ведутся поиски и разработки новых подходов к ведению больных ИБС. Перспективным направлением является изучение ангиогенеза [21, 22]. Раскрытие механизмов этого процесса позволит экзогснно стимулировать, либо создавать благоприятные условия для формирования новых сосудов и тем самым улучшать кровоснабжение миокарда [65, 102, 269]. Однако вряд ли стоит рассчитывать существенно повлиять на сложный, многофакторный процесс ангиогенеза только путём введения одного потенциального стимулятора. Необходимо учитывать условия, благоприятные для формирования новых сосудов. Для этого важна оценка динамики уровней факторов ангиогенеза у больных ИБС. Существуют работы, в которых показано угнетение ангиогенеза на фоне гиперлипидемии, гипергликемии, при развитии эндотелиальной дисфункции [106, 337, 415]. Известно, что гиперлипидемия, являющаяся одним из основных факторов риска развития атеросклероза, подавляет стимулирующее действие факторов роста ангиогенеза УЕОР [415] и ЬБвР [98, 330] и замедляет артериогенез по данным ангиографии [404]. Также показано, что СРБ подавляет ангиогенез, индуцированный УЕСБ [411] и рост коронарных коллатералей по данным коронароангиографии [156]. Больным с ИБС необходима постоянная комбинированная терапия, которая влияет на липидный спектр крови, эпдотелиальную дисфункцию, активность факторов воспаления, симпатико-адрепаловой и ренин-ангиотензин-альдостероновой системы, показатели свёртываемости крови и многие другие факторы, возможно, играющие свою роль в процессе ангиогенеза [266]. Представляется интересным изучить влияние терапии статинами в различных дозах на динамику факторов ангиогенеза и маркёров воспаления, так как ранее было показано, что препараты этой группы могут изменять естественное течение ангиогенеза у больных ИБС [82, 145, 394]. Так же есть данные, что в зависимости от дозы статины могут по-разному влиять на процессы ангиогенеза [430, 401].

В настоящем исследовании были поставлены следующие цель и задачи:

Цель исследования:

Изучить влияние терапии низкими, средними и высокими дозами розувастатина на факторы ангиогенеза у больных ИБС.

Задачи исследования:

1. Сравнить уровень факторов ангиогенеза - сосудистого эндотелиального фактора роста (УЕвР), трансформирующего фактора роста (3 (ТвРр), основного фактора роста фибробластов (ЬРОР), эндостатина - в крови у больных ИБС и здоровых лиц.

2. Сопоставить уровень факторов ангиогенеза со степенью поражения коронарного русла по данным коронароангиографии.

3. Сопоставить уровень факторов ангиогенеза со степенью нарушения миокардиальной перфузии по данным радионуклидной перфузионной сцинтиграфии миокарда.

4. Изучить влияние 3-х месячной терапии розувастатином в дозах 5 мг, 10 мг и 40 мг в сутки на динамику факторов ангиогенеза у больных ИБС.

Научная новизна.

Впервые в рамках одного исследования проведена оценка связи между факторами риска сердечно-сосудистых осложнений, выраженностью стенокардии напряжения, медикаментозной терапией и уровнем факторов ангиогенеза в периферической крови больных ИБС. Показано, что уровень сосудистого эндотелиального фактора роста выше у больных ИБС по сравнению со здоровыми добровольцами. Выявлено отсутствие различий в уровне факторов ангиогенеза у мужчин и женщин в постменопаузе. Установлено, что уровень эндостатина достоверно ниже у курящих, чем у некурящих больных ИБС.

Впервые в мире изучено влияние терапии розувастатином в дозах 5, 10 и 40 мг/сут на уровень факторов аигиогеиеза (сосудистого эидотелиалыюго фактора роста, трансформирующего фактора роста (3 и эндостатина) у больных хронической ИБС. Показано, что терапия розувастатином приводит к достоверному снижению уровня сосудистого эндотелиального фактора роста, трансформирующего фактора роста р и не влияет на уровень эндостатина. Установлено, что влияние розувастатина на данные факторы ангиогенеза не связано с гиполипидемическим действием препарата-и его воздействием на уровень высокочувствительного С-реактивного белка.

Практическая значимость.

Результаты работы могут быть использованы при разработке новых методов лечения больных ИБС, в частности, терапевтического ангиогенеза, а также новых подходов к ведению этих больных с учётом процессов неоваскуляризации.

 
 

Заключение диссертационного исследования на тему "Влияние терапии розувастатином на факторы ангиогенеза у больных хронической ишемической болезнью сердца"

выводы

1. У больных ИБС уровень УЕОБ в периферической крови достоверно выше, уровень ТОБр ниже, а уровень эндостатина достоверно не отличается от уровня данных показателей у здоровых добровольцев.

2. Отсутствуют достоверные различия в уровне УЕОБ, ТОБр и эндостатина в периферической крови у мужчин и женщин в постменопаузе.

3. Отсутствует корреляция между уровнями ОХС, ХС ЛНП, ХС ЛВП, ТГ, в.ч.СРБ и уровнями УЕОБ, ТОБр и эндостатина в крови больных ИБС.

4. Выявлена прямая связь между суммарным коронарным индексом стенозов (модифицированный индекс Оеггени), площадью преходящего дефекта перфузии миокарда (ОЭКТ миокарда с 99т-Тс-МИБИ) и уровнем УЕОБ у больных ИБС.

5. Терапия розувастатином в независимости от гиполипидемического действия препарата и его влияния на в.ч.СРБ приводит к достоверному снижению уровня УЕОБ, ТОРр и не влияет на уровень эндостатина.

6. Приём розувастатина в дозе 5 и 10 мг/сут в течение трёх месяцев приводит к снижению уровня УЕОР на 19% и 22% соответственно. На фоне приёма розувастатина в дозах 5, 10 и 40 мг/сут в течение трёх месяцев отмечается снижение уровня ТОРр на 23%, 26% и 18% соответственно.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Результаты настоящего исследования рекомендуется использовать при проведении научно-исследовательских работ, направленных на разработку новых подходов к лечению больных ИБС путём воздействия на факторы ангиогенеза.

 
 

Список использованной литературы по медицине, диссертация 2009 года, Семенова, Анна Евгеньевна

1. Аронов Д.М. Лечение и профилактика атеросклероза. Москва // «Триада-Х». -2000.-с. 412

2. Аронов Д.М., Лупанов В.П. Функциональные пробы в кардиологии. Москва // МЕДпресс-информ. - 2003. - 2-е издание. - с. 296

3. Беленков Ю.Н., Агеев Ф.Т., Мареев В.Ю. и др. Стволовые клетки и их применение для регенерации миокарда // ЖСН. 2003. - №4. - с. 4

4. Беленков Ю.Н., Сергиенко И.В., Лякишев A.A., Кухарчук В.В. Статины в современной кардиологической практике. Москва. - 2007

5. Габрусенко С.А., Малахов В.В., Сергиенко И.В. и др. Первый опыт применения в России лечебного метода наружной контрпульсации у больных ишемической болезнью сердца // Терапевтический архив. 2006. - № 9. - с. 2733

6. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации (IV пересмотр) // Кардиоваскулярная терапия и профилактика. — 2009. № 8(6). — Приложение 3.

7. Карпов Ю.А., Сорокин Е.В. Атеросклероз и факторы воспаления: нелипидные механизмы действия статинов // РМЖ. 2001. - № 9(10). - с. 5-9

8. Карпов Ю.А., Сорокин Е.В. Стабильная ишемическая болезнь сердца. -Москва. 2003. - с.'62-67

9. Клюжев В.М., Ардашев В.Н., Брюховецкий А.Г., Михеев A.A. Ишемическая болезнь сердца. Москва // Медицина. - 2004

10. Ю.Корзун А.И., Кириллова М.В. Сравнительная характеристика ингибиторов ГМГ-КоА-редуктазы (статинов). Аналитический обзор. Кафедра военно-морской и общей терапии ВМедА, СПб. 2003

11. П.Кравченко H.A., Ярмыш Н.В. Регуляция экспрессии эндотелиальной NO-синтазы и дисфункция сосудистого эндотелия при сердечно-сосудистой патологии // Цитология и генетика. 2008. - № 4(42). - с. 69-80

12. Кухарчук B.B. Атеросклероз. Актуальные вопросы профилактики и терапии // Кардиоваскулярная терапия и профилактика. 2003. - № 6. - с. 80-85

13. Либов И.А., Иткин Д.А. Нарушение липидного обмена и атеросклероз // Лечащий врач. 2003. - № 3. - с. 72

14. Матусова Е.И. Агрессивная тактика лечения статинами больных с высоким риском сердечно-сосудистых событий // Сердце. 2008. - № 6(44). - с. 349-56

15. Насонов Е.Л. Маркёры воспаления и атеросклероз: значение С-реактивного белка // Кардиология. 1999. - № 2. - с. 81-6

16. Наумов В.Г., Лупанов В.П., Лякишев A.A. и др. Лечение хронической ишемической болезни сердца. Пособие для врачей. Москва // РКНПК МЗ РФ. - 2004. - с. 28

17. Олефиренко Г.А., Чиликина Г.В., Шевченко О.П. С-реактивный белок в современной лабораторной практике // Лаборатория. 1999. - № 4. - с. 8-9

18. Парфёнова Е.В., Плеханова О.С., Ткачук В.А. Активаторы плазмииогена в ремоделировании сосудов и ангиогенезе // Биохимия. 2002. - №1(67). - с. 119134

19. Парфёнова Е.В., Ткачук В.А. Терапевтический ангиогенез: достижения, проблемы, перспективы // Кардиологический вестник. 2007. - № 2. - с. 5-15

20. Парфёнова Е.В., Цоколаева З.И., Трактуев Д.О. и др. Поиск новых «инструментов» для терапевтического ангиогенеза // Мол мед. 2006. - № 2. -с. 10-23

21. Петров В.И., Недогода C.B., Сабанов A.B. и др. Фармакоэкономические аспекты применения статинов при краткосрочной гиполипидемической терапии // Качественная Клиническая Практика. 2003. - № 1. - с. 46-51

22. Рубина К.А., Цоколаева З.И., Рахмат-Заде Т.М. и др. Аневризма сердца -новый источник мультипотентных клеток-предшественников // Материалы

23. XX съезда Физиологического общества им. И.П.Павлова. Москва, 4-8 июня 2007. - Изд. дом "Русский врач". - с. 80

24. Рудакова А.В. Розувастатин: фармакоэкономические аспекты применения // Клин, фармакол. тер. 2004. - № 4 - с. 13

25. Семёнова А.Е., Сергиенко И.В., Габрусенко С.А. Объективные методы оценки коронарного ангиогенеза // Кардиология. 2008. - № 6. - с. 19-23

26. Сумароков А.Б., Наумов В.Г., Масенко В.П. С-реактивный белок и сердечнососудистая патология. Тверь // «Триада». - 2006. - с. 180

27. Сусеков А.В. Ингибиторы ГМГ-КоА редуктазы при вторичной профилактике атеросклероза: 30 лет спустя // Consilium medicum. 2005. - № 11. - с. 896-903

28. Сусеков А.В. Программа клинических исследований розувастатина GALAXY // Сердце. 2005. - № 4(4). - с. 214-9

29. Шевченко О.П., Шевченко А.О. Статины ингибиторы ГМГ-КоА редуктазы // Реафарм. - Москва. - 2003. - с. 112

30. Adams V, Lenk K, Linke A, et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vase Biol. 2004 Apr;24(4):684-90

31. Aengevaeren WR. Beyond lipids the role of the endothelium in coronary artery disease. Atherosclerosis. 1999;147(suppl 1):S11-S16

32. Aepfelbacher M, Essler M, Huber E, et al. Bacterial toxins block endothelial wound repair: evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vase Biol. 1997;17:1623-9

33. Agrotis A, Kalinina N, Bobik A. Transforming growth factor-beta, cell signaling and cardiovascular disorders. Curr Vase Pharmacol. 2005 Jan;3(l):55-61

34. Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178-80

35. Ajith TA, Riji T, Anu V. In vitro anti-oxidant and DNA protective effects of the novel 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor rosuvastatin. Clin Exp Pharmacol Physiol. 2008 May;35(5-6):625-9

36. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res. 2000;261:44-51

37. American Heart Association Comment on JUPITER trial. (DALLAS) Nov. 9, 2008. http://americanheart.mediaroom.com/index.php?s=43&item=5 82

38. American Heart Association. Heart Disease and Stroke Statistics 2005 Update. Dallas, Tex: American Heart Association; 2004

39. Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 2005;65:649-55

40. Arenillas JF, Alvarez-Sabin J, Montaner J, et al. Angiogenesis in symptomatic intracranial atherosclerosis: predominance of the inhibitor endostatin is related to a greater extent and risk of recurrence. Stroke. 2005 Jan;36(l):92-7

41. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Cire Res 1999;85:221-8

42. Ashcroft GS, Yang X, Glcik AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999;1:260-6

43. Ashcroft GS. Bidirectional regulation of macrophage function by TGF-ß. Microbes Infect. 1999;1:1275-82

44. Assoain RK, Sporn MB. Type ß transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol. 1986;102:1217-23

45. Athyros VG, Kakafika AI, Tziomalos K, et al. Pleiotropic effects of statins clinical evidence. Curr Pharm Des. 2009;15(5):479-89

46. Auerbach W, Auerbach R. Angiogenesis inhibition: a review. Pharmacol Ther 1994;63:265-311

47. Auguste P, Javerzat S, Bikfalvi A. Regulation of vascular development by fibroblast growth factors. Cell Tissue Res 2003;314:157-66.

48. Aviram M, Rosenblat M, Bisgaier CL, et al. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998;138:271-80

49. Bae JH, Bassenge E, Kim KY, et al. Effects of low-dose atorvastatin on vascular responses in patients undergoing percutaneous coronary intervention with stenting. J Cardiovasc Pharmacol Ther. 2004 Sep;9(3): 185-92

50. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005;366:1267-78

51. Ballantyne CM. Low-density lipoproteins and risk for coronary artery disease. Am J Cardiol 1998;82:3Q-12Q

52. Barger AC, Beeuwkes R, 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984;310:175-7

53. Battegay EJ, Raines EW, Seifert RA, et al. TGF-P induces bimodal proliferation ofconnective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990;63:515-24

54. Belgore FM, Lip GY, Blann AD. Vascular endothelial growth factor and its receptor, Fit-1, in smokers and non-smokers. Br J Biomed Sci. 2000;57(3):207-13

55. Belle EV, Rivard A, Chen D, et al. Hypercholesterolemia Attenuates Angiogenesis but Does Not Preclude Augmentation by Angiogenic Cytokines Circulation. 1997;96:2667-74

56. Ben-Shoshan J, George J. Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials. Pharmacol Ther. 2007 Jul;115(l):25-36

57. Ben-Shoshan J, Keren G, George J. Endothelial progenitor cells new tools for diagnosis and therapy. Harefuah. 2006 May;145(5):362-6,397

58. Berry C, Balachandran KP, L'Allier PL, et al. Importance of collateral circulation in coronary heart disease. Eur Heart J. 2007 Feb;28(3):278-91

59. Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005 Dec; 128(6 Suppl):585S-590S

60. Bertrand ME, McFadden EP, Fruchart JC, et al. Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. J Am Coll Cardiol 1997; 30: 863-9

61. Betteridge DJ, Gibson M. Effect of rosuvastatin on LDL-C and CRP levels in patients with type 2 diabetes: results of ANDROMEDA study. Atheroscler Suppl 2004;5:107-8

62. Bian C, Lin J, Li XC, et al. Telmisartan-enhanced hypercholesterolaemic serum-induced vascular endothelial growth factor expression in immortalized human umbilical vascular endothelial cells. Scand J Clin Lab Invest. 2007;67(6):619-31

63. Biselli PM, Guerzoni AR, de Godoy MF, et al. Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart Vessels. 2008 Nov;23(6):371-5

64. Blankenhorn DH, Azen SP, Kramsch DM, et al. Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS). Ann Intern Med 1993;119:969-76

65. Blann AD, Belgore FM, Constans J, et al. Plasma vascular endothelial growth factor and its receptor Flt-1 in patients with hyperlipidemia and atherosclerosis and the effects of fluvastatin or fenofibrate. Am J Cardiol. 2001 May 15;87(10):1160-3

66. Blann AD, Belgore FM, McCollum CN, et al. Vascular endothelial growth factor and its receptor, Flt-1, in the plasma of patients with coronary or peripheral atherosclerosis, or Type II diabetes. Clin Sci (Lond). 2002 Feb; 102(2): 187-94

67. Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vase Biol. 2006 Aug;26(8): 1712-20

68. Bochkov VN, Philippova M, Oskolkova O, et al. Oxidized phospholipids stimulate angiogenesis via autocrine mechanisms implicating a novel role for lipid oxidation in the evolution of atherosclerotic lesions. Circ Res. 2006;99:900-8

69. Bogavac-Stanojevic N, Djurovic S, Jelic-Ivanovic Z, et al. Circulating transforming growth factor-betal, lipoprotein(a) and cellular adhesion molecules in angiographically assessed coronary artery disease. Clin Chem Lab Med. 2003 Jul;41(7):893-8

70. Boodhwani M, Mieno S, Feng J, et al. Atorvastatin impairs the myocardial angiogenic response to chronic ischemia in normocholesterolemic swine. J Thorac Cardiovasc Surg. 2008 Jan; 135(1): 117-22

71. Boodhwani M, Nakai Y, Mieno S, et al. Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg. 2006 Feb;81(2):634-41

72. Boodhwani M, Nakai Y, Voisine P, et al. High-dose atorvastatin improves hypercholesterolemic coronary endothelial dysfunction without improving the angiogenic response. Circulation. 2006 Jul4; 114(1 Suppl):I402-8

73. Bremnes RM, Camps C, Sirera R. Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer. 2006 Feb;51(2): 143-58

74. Bucay M, Nguy J, Barrios R, et al. Impaired adaptive vascular growth in hypercholesterolemic rabbit. Atherosclerosis. 1998;139:243-51

75. Buschmann I, Heil M, Jost M, Schaper W. Influence of inflammatory cytokines on arteriogenesis. Microcirculation. 2003 Jun;10(3-4):371-9

76. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). I Pathol 2000;190:338-42

77. Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai). 2008 Aug;40(8):681-92

78. Caixeta AM, Brito FS Jr, Costa MA, et al. Enhanced inflammatory response to coronary stenting marks the development of clinically relevant restenosis. Catheter Cardiovasc Interv. 2007 Mar l;69(4):500-7

79. Campeau L. Grading of angina pectoris (letter). Circulation 1976;54:522-3

80. Cannon CP, Braunwald E, McCabe CH, et al: Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350(15): 1495-504

81. Carmeliet P, Jain RK. Angiogenesis in canser and other diseases. Nature 2000 Sepl4;407(6801):249-57

82. Carmeliet P, Ng YS, Nuyens D, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF 188. Nat Med 1999;5:495-502

83. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653-60

84. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389-95

85. Chamberlain J. Transforming growth factor-beta: a promising target for antistenosis therapy. Cardiovasc Drug Rev. 2001 Winter; 19(4):329-44

86. Chavakis E, Dernbach E, Hermann C, et al. Oxidized LDL inhibits vascular endothelial growth factorinduced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation. 2001;103:2102-7

87. Chen CH, Jiang T, Yang JH, et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation. 2003;107:2102-8

88. Chen CH, Jiang W, Via DP, et al. Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic fibroblast growth factor expression. Circulation. 2000 Jan 18; 101(2): 171-7

89. Chen CH, Poucher SM, Lu J, Henry PD. Fibroblast growth factor 2: from laboratory evidence to clinical application. Curr Vase Pharmacol. 2004;2:33-43

90. Chen CH, Walterscheid JP. Plaque angiogenesis versus compensatory arteriogenesis in atherosclerosis. Circ. Res. 2006;99;787-9

91. Chen Z, Peto R, Collins R, et al. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations. BMJ• 1991;303:276-82

92. Chillemi F, Francescato P, Ragg E, et al. Studies on the structure-activity relationship of endostatin: synthesis of human endostatin peptides exhibiting potent antiangiogenic activities. J Med Chem. 2003 Sep 11;46(19):4165-72

93. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Med 2001;7:53-8

94. Chung NA, Lydakis C, Belgore F, et al. Angiogenesis, thrombogenesis, endothelial dysfunction and angiographic severity of coronary artery disease. Heart. 2003 Dec;89(12):1411-5

95. Cipollone F, Fazia M, Mincione G, et al. Increased expression of transforming growth factor-pl as a stabilizing factor in human atherosclerotic plaques. Stroke. 2004;35:2253-7

96. Cooke JP, Losordo DW. Nitric oxide and angiogenesis. Circulation.2002; 105:2133-5

97. Cuevas P, Barrios V, Giménez-Gallego G, et al. Serum levels of basic fibroblast growth factor in acute myocardial infarction. Eur J Med Res. 1997 Jul 28;2(7):282-4

98. Czepluch FS, Bergler A, Waltenberger J. Hypercholesterolaemia impairs monocyte function in CAD patients. J Intern Med. 2007 Feb;261(2):201-4

99. De Backer G, Ambrosioni E, Borch-Jhonsen K, et al. European guidelines of cardiovascular disease prevention in clinical practice. Eur Heart J 2003;24:1601-10.

100. De Muinck ED, Simons M. Re-evaluating therapeutic neovascularization. J Mol Cell Cardiol 2004;36:25-32

101. Delerive P, De Bosscher K, Besnard S, et al. Peroxisome Proliferator-activated Receptor a Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcri ption Factors NF-kB and AP-1. J Biol Chem 1999; 274: 32048-54

102. Delerive P, Gervois P, Fruchart J-C, et al. Induction of IkBa expression as a mechanism contributing to the antiinflammatory activities of peroxisome proliferator-activated receptor a activators. J Biol Chem 2000; 275: 36703-7

103. Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis Clin Chem. 2009 Feb;55(2):229-38

104. Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res. 2000;87:434-9

105. Dincer I, Ongun A, Turhan S, et al. Association between the dosage and duration of statin treatment with coronary collateral development. Coron Artery Dis. 2006 Sep;17(6):561-5

106. Ding G, van Goor H, Frye J, Diamond JR. Transforming growth factor-beta expression in macrophages during hypercholesterolemic states. Am J Physiol. 1994 Dec;267(6 Pt 2):F937-43

107. Dong C, Goldschmidt-Clermont PJ. Endothelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol 2007; 20(2):93-9

108. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801-10

109. Donnini S, Solito R, Giachetti A, et al. Fibroblast growth factor-2 mediates Angiotensin-converting enzyme inhibitor-induced angiogenesis in coronary endothelium. J Pharmacol Exp Ther. 2006 Nov;319(2):515-22

110. Dor Y, Djonov V, Abramovitch R, et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 2002;21:1939-47

111. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of

112. AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA, 1998;279(20): 1615-22

113. Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007 May 29;49(21):2073-80

114. Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 1995;108(Pt 7):2655-61

115. Eaton CB, Gramling R, Parker DR, Roberts MB, Lu B, Ridker PM. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis. 2008 Sep;200(l):221-7

116. Edwards PA, Ericsson J. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem. 1999;68:157-85

117. Ellegala DB, Leong-Poi H, Carpenter JE, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003;108:336-41

118. Erl W. Atorvastatin-induced downregulation of surviving and vascular smooth muscle cell apoptosis: a causal relationship in restenosis? Cardiovasc Drugs Ther. 2007 Jun;21(3): 141-4

119. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285:2486-97

120. Fahlen L, Read S, Gorlik L, et al. T cells that cannot respond to TGFp escape control by CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:737-46

121. Felbor U, Dreier L, Bryant RA, et al. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000;19:1187-94

122. Ferrante G, Niccoli G, Biasucci LM, et al. Association between C-reactive protein and angiographic restenosis after bare metal stents: an updated and comprehensive meta-analysis of 2747 patients. Cardiovasc Revasc Med. 2008 Jul-Sep;9(3): 156-65

123. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76

124. Ferrara N. History of Discovery: Vascular Endothelial Growth Factor. Arterioscler Thromb Vase Biol. 2009 Jan 22. Epub ahead of print.

125. Folkman J, Ingber D. Inhibition of angiogenesis. Semin Cancer Biol 1992;3:89-96

126. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442-7

127. Fortuno A, San Jose G, Moreno MU, et. al. Oxidative stress and vascular remodeling. Exp Physiol 2005;90.4:457-62

128. Gaspardone A, Versaci F, Tomai F, et al. C-Reactive protein, clinical outcome, and restenosis rates after implantation of different drug-eluting stents. Am J Cardiol. 2006 May 1 ;97(9): 1311-6

129. Gerrah R, Fogel M, Gilon D. Aspirin decreases vascular endothelial growth factor release during myocardial ischemia. Int J Cardiol. 2004 Mar;94(l):25-9.

130. Gibbons GH. Cardioprotective mechanisms of ACE inhibition. The angiotensin II nitric oxide balance. Drugs. 1997;54(suppl 5): 1-11

131. Gingras D, Lamy S, Beliveau R. Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. Biochem J. 2000;348:273-80

132. Giurgea AG, Margeta C, Maca T, et al. Simvastatin reduces serum level of vascular endothelial growth factor in hypercholesterolemic patients. J Cardiovasc Pharmacol. 2006 Jan;47(l):30-6

133. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425-30

134. Goligorsky MS, Budzikowski AS, Tsukahara H, et al. Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin Exp Pharmacol Physiol. 1999;26:269-71

135. Gorelik L, Flavell RA. Abrogation of TGFß signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000;12:171-81

136. Gotto AM, Whitney E, Stein EA, et al. Relation Between Baseline and On-Treatment Lipid Parameters and First Acute Major Coronary Events in the Air

137. Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101:477

138. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Activin receptor-like kinase (ALK) 1 is an antagonist mediator of lateral TGF-(3/ALK5 signaling. Mol Cell. 2003;12:817-28

139. Goumans MJ, Valdimarsdottir G, Itoh S, et al. Balancing the activation state of the endothelium via two distinct TGF-P type I receptors. EMBO J. 002;21:1743-53

140. Grainger DJ. TGF-beta and atherosclerosis in man. Cardiovasc Res. 2007 May l;74(2):213-22

141. Griendling KK, FitzGerald. Oxidative stress and cardiovascular injury Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108:1912-6

142. Grines CI, Watkins MW, Helmer G, et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002;105:1291-7

143. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004; 110(2): 227-39

144. Gulec S, Ozdemir AO, Maradit-Kremers H, et al. Elevated levels of C-reactive protein are associated with impaired coronary collateral development. Eur J Clin Invest. 2006 Jun;36(6):369-75

145. Guo H, Huang L, Cheng M, et al. Serial measurement of serum basicifibroblast growth factor in patients with acute cerebral infarction. Neurosci Lett. 2006 Jan 23;393(l):56-9

146. Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 1996;270:H1791-802

147. Harris TD, Kalogeropoulos S, Nguyen T, et al. Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm 2003;18:627-41

148. Harrison DG, Armstrong ML, Freiman PC, Heistad DD. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest. 1987;80:1808-11

149. Hasdai D, Barak V, Leibovitz E, et al. Serum basic fibroblast growth factor levels in patients with ischemic heart disease. Int J Cardiol. 1997 Apr 18;59(2): 1338

150. Hashimoto K, Shimizu E, Komatsu N, et al. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res. 2003 Oct 15;120(3):211-8

151. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360:7-22

152. Heeschen C, Jang JJ, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7:833-9

153. Heil M, Schaper W. Insights into pathways of arteriogenesis. Curr Pharm Biotechnol. 2007 Feb;8(l):35-42

154. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390: 465-71

155. Helisch A, Schaper W. Arteriogenesis: the development and growth of collateral arteries. Microcirculation. 2003;10:83-97

156. Henry TD, Annex BN, Azrin MA, et al. Final results of the VIVA trial of rhVEGF for human therapeutic angiogenesis. Circulation. 1999;100(suppl I):I-476

157. Henry TD, Annex BN, McKendall GR, et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 2003;107:1359-65

158. Herd JA, Ballantyne C, Fanner J, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoprotein and Coronary Atherosclerosis Study LCAS.) References. Am J Cardiol 1997;80:278-86

159. Herd JA, West MS, Ballantyne C, et al. Baseline characteristics of subjects in the Lipoprotein and Coronary Atherosclerosis Study (LCAS) with fluvastatin. Am J Cardiol 1994;73:42D-9D

160. Hernandez-Perera O, Perez-Sala D, Soria E, et al. Involvement of rho GTPases in the transcriptional inhibition of preproendothelin-1 gene expression by simvastatin in vascular endothelial cells. Circ Res. 2000;87:616-22

161. Hlatky M.A. Expanding the Orbit of Primary Prevention — Moving beyond JUPITER. N Engl J Med 2008; 359: 2280-2

162. Hohlagschwandtner M, Knofler M, Ploner M, et al. Basic fibroblast growth factor and hypertensive disorders in pregnancy. Hypertens Pregnancy.2002;21 (3):235-41

163. Hojo Y, Ikeda U, Zhu.Y, et al. Expression of vascular endothelial growth factor in patients with acute myocardial infarction. J Am Coll Cardiol. 2000 Mar 15;35(4):968-73

164. Holm PW, Slart RH, Zeebregts CJ, et al. Atherosclerotic plaque development and instability: A dual role for VEGF. Ann Med. 2008 Dec 16:1-8. Epub ahead of print.

165. Honsawek S, Chongsrisawat V, Vejchapipat PI, et al. High levels of serum basic fibroblast growth factor in children with biliary atresia. Hepatogastroenterology. 2008 Jul-Aug;55(85):1184-8

166. Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor specific modulation of cellular response by syndecan-4. J Cell Biol 2002;157:715-25

167. Hoshida S, Nishino M, Takeda T, et al. A persistent increase in C-reactive protein is a risk factor for restenosis in patients with stable angina who are not receiving statins. Atherosclerosis. 2004 Apr;173(2):285-90

168. Hoying JB, Yin M, Diebold R, et al. Transforming growth factor pi enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. J Biol Chem. 1999;274:31008-13

169. Hua J, Dobracki LW, Sadeghi MM, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 2005;1 11:3255-60

170. Huang Y, Hickey RP, Yeh JL, et al. Cardiac myocyte-specific HIF-1 alpha deletion alters vascularisation, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J 2004; 18:1138-40

171. Hugs GC, Post MJ, Simons M, Annex BH. Translational physiology, porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol 2003;94:1689-701

172. Ikeda U, Shimada K. Statins and monocytes. Lancet 1999;353:2070

173. Ikeda U, Shimpo M, Ohki R, et al. Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension. 2000;36:325-9

174. Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res. 2004;64:526-35

175. Irvine SA, Foka P, Rogers SA, et al. A critical role for the Apl-binding sites in the transforming growth factor-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic Acids Res. 2005;33:1423-34

176. Isaacsohn J, Zinny M, Mazzu A, et al. Influence of gender on the pharmacokinetics, safety, and tolerability of cerivastatin in healthy adults. Eur J Clin Pharmacol. 2001;56:897-903

177. Ishida A, Murray J, Saito Y, et al. Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 2001;188:359-68

178. Jain RK, Finn AV, Kolodgie FD, et al. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat Clin Pract Cardiovasc Med. 2007 Sep;4(9):491-502

179. Jakob C, Sterz J, Zavrski I, et al. Angiogenesis in multiple myeloma. Eur J Cancer. 2006 Jul;42(l l):1581-90

180. Jang JJ, Ho HK, Kwan HH, et al. Angiogenesis is impaired by hypercholesterolemia: role of asymmetric dimethylarginine. Circulation. 2000;102:1414-9

181. Jewell UR, Kvietikova I, Scheid A, et al. Induction of HIF-1 alpha in response to hypoxia is instantaneous. Faceb J 2001;15:1312-4.

182. Jia L, Takahashi M, Yoshioka T, et al. Therapeutic potential of endothelial progenitor cells for cardiovascular diseases. Curr Vase Pharmacol. 2006 Jan;4(l):59-65

183. Jones PH, Davidson MH, Stein EA, et al. for the STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR Trial). Am J Cardiol 2003; 92: 152-60

184. Kalinina N, Agrotis A, Antropova Y, et al. Smad expression in,' human atherosclerotic lesions: evidence for impaired TGF-ß/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vase Biol. 2004;24:1391-6

185. Kamishirado H, Inoue T, Sakuma M, et al. Effects of statins on restenosis after coronary stent implantation. Angiology. 2007 Feb-Mar;58(l):55-60

186. Katinioti AA, Tousoulis D, Economou E, et al. Basic fibroblast growth factor changes in response to coronary angioplasty in patients with stable angina. Int J Cardiol. 2002 Aug;84(2-3): 195-9

187. Katsanos K Karnabatidis D, Diamantopoulos A, et al. Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model. J Vase Surg. 2009 Feb 12. Epub ahead of print.

188. Khalil N, Xu YD, O'Connor R, Duronio V. Proliferation of pulmonary interstitial fibroblasts is mediated by TGF-ß induced release of extracellular FGF-2 and phosphorylation of p38MAPK and JNK. J Biol Chem. 2005;280:43000-9

189. Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-betal in intimal thickening after vascular injury. Cardiovasc Res. 2007 May l;74(2):223-34

190. Khan TA, Sellke FW, Laham RJ. Therapeutic angiogenesis: protein-based therapy for coronary artery disease. Expert Opin Pharmacother. 2003 Feb;4(2):219-26

191. Khanna A. Concerted effect of transforming growth factor-p, cyclin inhibitor p21 and c-myc on smooth muscle cell proliferation. Am J Physiol. 2004;286:H1133-H1140

192. Khurana R, Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic desease. Trends Cardiovasc Med 2003;13:116-22

193. Kim JY, Ko YG, Shim CY, et al. Comparison of effects of drug-eluting stents versus bare metal stents on plasma C-reactive protein levels. Am J Cardiol. 2005 Nov 15;96(10):1384-8

194. Kim SI, Kim HJ, Han DC, Lee HB. Effect of lovastatin on small GTP binding proteins and on TGF-betal and fibronectin expression. Kidney Int Suppl. 2000 Sep;77:S88-92

195. Kim SJ, Depre C, Vatner SF. Novel mechanisms mediating stunned myocardium. Heart Fail Rev 2003;8:143-53

196. Kleiman N.S., Califf R.M. Results from late-breaking clinical trials sessions at ACCIS 2000 and ACC 2000. American College of Cardiolo gy. J Am Coll Cardiol. 2000;36:310-25

197. Kobayashi S, Inoue N, Ohashi Y, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vase Biol. 2003 Aug l;23(8):1398-404

198. Kochiadakis GE, Marketou ME, Arfanakis DA, et al. Reduce d systemic inflammatory response to implantation of sirolimus-eluting stents in patients with stable coronary artery disease. Atherosclerosis. 2007 Oct;194(2):433-8

199. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sei (Lond). 2005 Mar;108(3):205-13

200. Kolodgie FD, Narula J, Yuan C, et al. Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol. 2007 May 29;49(21):2093-101

201. Kondoh K, Koyama H, Miyata T, et al. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc Res.2004;61:132-42

202. Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles. Gene Ther 2005;12:1305-12.

203. Kriegel MA, Li MO, Sanjabi S, et al. Transforming growth factor-beta: recent advances on its role in immune tolerance. Curr Rheumatol Rep. 2006 Apr;8(2): 138-44

204. Kucukardali Y, Aydogdu S, Ozmen N, et al. The relationship between severity of coronary artery disease and plasma level of vascular endothelial growth factor. Cardiovasc Revasc Med. 2008 Apr-Jun;9(2):66-70

205. Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004-10

206. Kurschat P, Eming S, Nashan D, et al. Early increase in serum levels of the angiogenesis-inhibitor endostatin and of basic fibroblast growth factor in melanoma patients during disease progression. Br J Dermatol. 2007 Apr;156(4):653-8

207. Ky B, Burke A, Tsimikas S, et al. The influence of pravastatin and atorvastatin on markers of oxidative stress in hypercholesterolemic humans. J Am Coll Cardiol. 2008 Apr 29;51(17): 1653-62

208. Langheinrich AC, Kampschulte M, Buch T, Bohle RM. Vasa vasorum and atherosclerosis Quid novi? Thromb Haemost. 2007 Jun;97(6):873-9

209. Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005 Feb 15;65(3):599-608

210. Lee CH, Smits PC. Vascular growth factors for coronary angiogenesis. J Interv Cardiol. 2002 Dec; 15(6):511-8

211. Lei L, Zhou R, Zheng W, et al. Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation 2004;110:796-802

212. Lekas M, Lekas P, Latter DA, et al. Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: time for a re-evaluation? Curr Opin Cardiol. 2006 Jul;21(4):376-84

213. Leong-Poi H, Christiansen J, Klibanov AL, et al. Noninvasive assessment of angiogenesis by ultrasound and micro-bubbles targeted to alpha(v)-integrins. Circulation 2003; 107:455-60

214. Levin DC. Pathways and functional significance of the coronary collateral circulation. Circulation 1974;50:831-7

215. Li JJ, Qin XW, Yang XC, et al. Randomized comparison of early inflammatory response after sirolimus-eluting stent vs bare metal stent implantation in native coronary lesions. Clin Chim Acta. 2008 Oct;396(l-2):38-42

216. Li JJ, Yan HB, Xiang XP, et al. Comparison of changes in early inflammatory markers between sirolimus- and paclitaxel-eluting stent implantation. Cardiovasc Drugs Ther. 2009 Apr;23(2): 137-43

217. Li JJ. Inflammatory response, drug-eluting stent and restenosis. Chin Med J (Engl). 2008 Mar 20;121(6):566-72

218. Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99-146.

219. Lin JW, Sheu WH, Lee WJ, et al. Circulating hepatocyte growth factor level but not basic fibroblast growth factor level is elevated in angiography-proven symptomatic peripheral artery disease. Angiology. 2007 Aug-Sep;58(4):420-8

220. Lin TH, Yen HW, Su HM, et al. Effects of total coronary artery occlusion on vascular endothieial growth factor and transforming growth factor beta. Kaohsiung J Med Sci. 2005 Qct;21(10):460-5

221. Lindner V. Vascular repair processes mediated by transforming growth factor-beta. Z Kardiol. 2001;90 Suppl 3:17-22

222. Liou JY, Shyu KG, Lu MJ, et al. Peric ardial fluid and serum levels of vascular endothelial growth factor and endostatin in patients with or without coronary artery disease. J Formos Med Assoc. 2006 May;105(5):377-83

223. LIPID study group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. References. N Engl J Med 1998;339:1349-57

224. Llevadot J, Murasawa S, Kureishi Y et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest. 2001;108:399-405

225. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost 2003;90:167-84

226. Lu E, Wagner WR, Schellenberger U, et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 2003;108:97-103

227. Lutgens E, Gijbels M, Smook M, et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vase Biol. 2002 Jun l;22(6):975-82

228. Luttun A, Carmeliet P. De novo vasculogenesis in the heart. Cardiovasc Res 2003;58:378-89

229. Ma FX, Han ZC. Cardiovasc Drug Rev. Statins, nitric oxide and neovascularization. 2005 Winter;23(4):281-92

230. MAAS investigators. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS) Reference(s) Lancet 1994;344:633-8

231. Mack WJ, Krauss RM, Hodis HN. Lipoprotein subclasses in the Monitored Atherosclerosis Regression Study (MARS). Treatment effects and relation tocoronary angiographic progression. Arterioscler Thromb Vase Biol 1996; 16:697704

232. Mahley RW, Bersot TP: Drug therapy for hypercholesterolemia and dyslipidemia. In: Hardman JG, ed. Goodman & Gilman's. The pharmacological basis of therapeutics. 10th ed. New York, NY: McGraw-Hill, 2001; 971-1002

233. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: a link between angiogenesis and thrombogenesis? Clin Sei (Lond). 2003 Apr;104(4):397-404

234. Mallat Z, Gojova A, Marchiol-Fournigault C, et al. Inhibition of TGF-ß signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res. 2001;89:930-4

235. Marie JC, Letterio JJ, Gavin-M, Rudensky AY. TGF-ß 1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:1061-7I

236. Marón DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation.2000; 101:207-13

237. Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the Rhosignaling pathway activates PPARa and induces HDL apoA-I. J Clin Invest 2001;107:1423-32

238. Martínez-González J, Badimon L. Influence of statin use on endothelial function: from bench to clinics. Curr Pharm Des. 2007;13(17): 1771-86

239. Massague J. Type beta transforming growth factor from feline sarcoma virus-transformed rat cells. Isolation and biological properties. J Biol Chem. 1984;259:9756-61

240. Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88:1291-4

241. Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sei STKE 2001 ;2001 :RE21

242. McCaffrey TA, Consigli S, Du B, et al. Decreased type Ii/type I TGF-ß receptor ratio in cells derived from human atherosclerotic lesions. Conversion froman antiproliferative to profibrotie response to TGF~p. J Clin Invest. 1995;96:2667-75

243. McGillicuddy FC, Lynch I, Rochev YA, et al. Novel "plum pudding" gels as potential drug-eluting stent coatings: controlled release of fluvastatin. J Biomed Mater Res A. 2006 Dec 15;79(4):923-33

244. McGillicuddy FC, OToole D, H ickey JA, et al. TGF-betal-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by fluvastatin in human coronary artery smooth muscle cells. Vascul Pharmacol. 2006 Jun;44(6):469-75

245. McKenney JM. Efficacy and safety of rosuvastatin in treatment of dyslipidemia. Am J Health Syst Pharm. 2005 May 15;62(10):1033-47

246. Mignatti P, Rifkin DB. Release of basic fibroblast growth factor, an angiogenic factor devoid of secretory signal sequence: a trivial phenomenon or a novel secretion mechanism? J Cell Biochem. 1991 Nov;47(3):201-7

247. Mitsuma W, Kodama M, Hanawa H, et al. Serum endostatin in the coronary circulation of patients with coronary heart disease and its relation to coronary collateral formation. Am J Cardiol. 2007 Feb 15;99(4):494-8

248. Miura S, Saku K. Regulation of angiogenesis and angiogenic factors by cardiovascular medications. Curr Pharm Des. 2007; 13(20):2113-7

249. Miyauchi K, Kasai T, Yokayama T, et al. Effectiveness of statin-eluting stent on early inflammatory response and neointimal thickness in a porcine coronary model. Cire J. 2008 May;72(5):832-8

250. Morbidelli L, Donnini S, Chillemi F, et al. Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin Cancer Res. 2003 Nov l;9(14):5358-69

251. Moreno PR, Purushothaman KR, Zias E, et al. Neovascularization in human atherosclerosis. Curr Mol Med. 2006 Aug;6(5):457-77

252. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003 Apr 15;100(8):4736-41

253. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360:7-22

254. Mukherjee D, Cornelia K, Bhatt DL, et al. Clinical outcome of a cohort of patients eligible for therapeutic angiogenesis or transmyocardial revascularization. Am Heart J 2001;142:72-4

255. Nabel EG, Shum L, Pompiii VJ, et al. Direct transfer of transforming growth factor-ßl gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sei USA. 1993;90:10759-63

256. Nakajima K, Tabata S, Yamashita T, et al. Plasma vascular endothelial growth factor level is elevated in patients with multivessel coronary artery disease. Clin Cardiol. 2004 May;27(5):281-6

257. Nakao A, Miike S, Hatano M, et al. Blockade of transforming growth factor ß/smad signaling in T cells by overexpression of smad7 enhances antigen-induced airway inflammation and airway reactivity. J Exp Med. 2000;192:151-8

258. Nickenig G, Baumer AT, Temur Y, et al. Statin-sensitive dysregulated ATI receptor function and density in hypercholesterolemic men. Circulation. 1999;100:2131-4

259. Nikol S, Pelisek J, Engelmann MG, et al. Vascular endothelial growth factor (VEGF165) and its influence on angiogenesis versus arteriogenesis in different vascular beds. J Endovasc Ther. 2002 Dec;9(6):842-54

260. Nissen S, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis. The ASTEROID JAMA 2006;295 (13): 1556-65

261. Nissen S.E., Tuzcu E.M., Schoenhagen P., et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291:1071-80

262. Nissen SE, Nicholls SJ, Sipahi I, et al.; ASTEROID Investigators. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006 Apr 5;295(13):1556-65

263. Nissen SE, Tuzcu E, Sehoenhagen P, et al. for REVERSAL Investigators. Statin Therapy, LDL Cholesterol, C-Reactive Protein, and Coronary Artery Disease. N Engl J Med 2005; Vol 352, N 1, 29-38

264. Niwa S, Totsuka T, Hayashi S. Inhibitory effect of fluvastatin, an HMG-CoA reductase inhibitor, on the expression of adhesion molecules on human monocyte cell line. Int J Immunopharmacol 1996; 18: 669-75

265. Norja S, Nuutila L, Karhunen PJ, Goebeler S. C-reactive protein in vulnerable coronary plaques. J Clin Pathol. 2007 May;60(5):545-8

266. Nurden AT, Nurden P, Sanchez M, et al. Platelets and wound healing. Front Biosci. 2008 May l;13:3532-48

267. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277-85

268. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79: 315-28

269. O'Keefe JH, Cordain L, Harris WH, et al. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am.Coll.Cardiol. 2004; 43:2142-6

270. Olsson AG, McTaggart F, Raza A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc Drug Rev. 2002 Winter;20(4):303-28

271. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2:reviews3005.1-12

272. Ota T, Fujii M, Sugizaki T, et al. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-ß in human umbilical vein endothelial cells. J Cell Physiol. 2002;193:299-318

273. Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenyl-acetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest. 1997;100:2671-9

274. Panchal VR, Rehman J, Nguyen AT, et al. Reduced pericardial levels of endostatin correlate with collateral development in patients with ischemic heart disease. J Am Coll Cardiol, 2004; 43:1383-7

275. Panousis CG, Evans G, Zuckerman SH. TGF-P increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-. J Lipid Res. 2001;42:856-63

276. Park HJ, Kong D, Iruela-Arispe L, et al. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res. 2002 Jul 26;91(2):143-50

277. Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res. 2004;117:3-32

278. Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995;1:1085-9

279. Pedersen TR, Wilhelmsen L, Faergeman O, et al. Follow-up study of patients randomized in the Scandinavian Simvastatin Survival Study (4S) of cholesterol lowering. Am J Cardiol. 2000;86:257-62

280. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole TGF-p receptor I kinase inhibitors and their blockade of epithalial mesenchymal transition. Biochemistry. 2005;44:2293-304

281. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vase Biol 2001;21:1104-17

282. Pitt B, Ellis SG, Mancini GBJ, et al. Design and recruitment in the United States of a multicenter quantitative angiographic trial of pravastatin to limit atherosclerosis in the coronary arteries (PLAC I) Am J Cardiol 1993;72:31-5

283. Pitt B, Mancini GBJ, Ellis SG, et al. Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): reduction in atherosclerosis progression and clinical events. J Am Coll Cardiol 1995;26:1133-9.

284. Podrez EA, Poliakov E, Shen Z, et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem. 2002;277:38517-23

285. Pollman MJ, Naumovski L, Gibbons GH. Vascular cell apoptosis: cell type-specific modulation by transforming growth factor-ßl in endothelial cells versus smooth muscle cells. Circulation. 1999;99:2019-26

286. Poltorak Z, Cohen T, Sivan R, et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997:272:7151-8

287. Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49:522-31

288. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Retal Cancer 2000;7:165-97.

289. Pruefer D, Makowski J, Schnell M, et al. Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation 2002;106:2104-10

290. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the fflF system. Nat Med 2003;9:677-84

291. Pyda M, Korybalska K, Ksiazek K, et al. Effect of heparin on blood vascular endothelial growth factor levels in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol. 2006;98:902-5

292. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet, 1994; 344(8934): 1383-9

293. Redondo S, Santos-Gallego CG, Tejerina T. TGF-betal: a novel target for cardiovascular pharmacology. Cytokine Growth Factor Rev. 2007 Jun-Aug;18(3-4):279-86

294. Rentrop KP, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 1985;5:587-92

295. Ribatti D, Levi-Schaffer F, Kovanen PT. Inflammatory angiogenesis in atherogenesis a double-edged sword. Ann Med. 2008;40(8):606-21

296. Ridker PM, Cannon CP, Morrow D, et al. for PROVE IT-TIMI 22 Investigators. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; Vol 352, N1, 20-28

297. Ridker PM, Danielson E, Fonscca FAH, et al., for the JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195-207

298. Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma-concentrations of C-reactive protein. Circulation 1999;100:230-5

299. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of Interleukin-6 and the Risk of Future Myocardial Infarction Among Apparently Healthy Men. Circulation 2000; Vol 101, N 15, 1767-72

300. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol. 2001;11:471-7

301. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671-4

302. Rissanen TT, Markkahen JE, Gruchala M, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003;92:1098-106

303. Roberts AB, Anzano MA, Lamb LC, et al. Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature. 1982;295: 417-9

304. Robertson AK, Rudling M, Zhou X, et al. Disruption of TGF-0 in T cells accelerates atherosclerosis. J Clin Invest.2003;l 12:1342-50

305. Romano M, Diomede L, Sironi M, et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest. 2000;80:1095-100

306. Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control. 2002 Mar-Apr;9(2 Suppl):36-44

307. Rosinberg A, Khan TA, Sellke FW, Laham RJ. Therapeutic angiogenesis for myocardial ischemia. Expert Rev Cardiovasc Ther. 2004 Mar;2(2):271-83

308. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol. 1999;17:3631-52

309. Ruel M, Wu GF, Khan TA, et al. Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a Swine endothelial dysfunction model Circulation. 2003 Sep 9; 108 Suppl 1:11335-40

310. Ruwhof C, van Wamel AE, Egas JM, van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem. 2000;208: 89-98

311. Sacks FM, Pfeffer MA, Moye LA, et al: The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N EnglJ Med, 1996; 335(14): 1001-9

312. Sadamatsu K, Shimokawa H, Tashiro H, et al. Different effects of simvastatin and losartan on cytokine levels in coronary artery disease. Am J Cardiovasc Drugs. 2006;6(3): 169-75

313. Sager PT, Melani L, Lipka L, et al. for the Ezetimib Study Group. Effect of coadministration of Ezetimibe and Simvastatin on High-Sensivity C-Reactive Protein. Am J Cardiol 2003; Vol 92, N 12, 1414-8

314. Sanchez-Quesada JL, Benitez S, Ordonez-Llanos J. Electronegative lowdensity lipoprotein. Curr Opin Lipidol. 2004;15:329-35

315. Sandhofer A, Tatarczyk T, Kirchmair R, et al. Are plasma VEGF and its soluble receptor sFlt-1 atherogenic risk factors? Cross-sectional data from the SAPHIR study. Atherosclerosis. 2009 Feb 3. Epub ahead of print.

316. Sato K, Kawasaki H, Nagayama H, et al. TGF-ßl reciprocally controls Chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol. 2000;164:2285-95

317. Schaan BD, Quadros AS, Sarmento-Leite R, et al. 'Correction:' Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease. Cardiovasc Diabetol. 2007 Jul 25;6:19

318. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Tromb Vase Biol 2003;23:1143-51

319. Scheller B, Schmitt A, Böhm M, Nickenig G. Atorvastatin stent coating does not reduce neointimal proliferation after coronary stenting. Z Kardiol. 2003 Dec;92(12): 1025-8

320. Schillinger M, Minar E. Restenosis after percutaneous angioplasty: the role of vascular inflammation. Vase Health Risk Manag. 2005;l(l):73-8

321. Schmidt A, Göpfert C, Vlodavsky I, et al. Induction of a hypertrophic growth status of coronary smooth muscle cells is associated with an overexpression of TGF-beta. Eur J Cell Biol. 2002 Mar;81(3):138-44

322. Schonebeck U, eVaro N, Libby P, et al. Soluble CD40L and cardiovascular risk in women. Circulation, 2001, VI04, 2266-8

323. Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998;97:645-50

324. Schupp N, Schmid U, Heidland A, Stopper H. Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008 Aug;199(2):278-87

325. Schuster'H, Barter PJ, Stender S, et al. Effects of switching statins on achievement of lipid goals: Measuring Effective Reductions in Cholesterol Using Rosuvastatin therapy (MERCURY I) study. Am Heart J 2004;147:705-13

326. Schuster H. Effects of switching to rosuvastatin from atorvastatin or other statins on achievement of international low-density lipoprotein cholesterol goals: MERCURY I trial. J Am Coll Cardiol 2003,41 Suppl:227A-8A

327. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomised controlled trial. JAMA. 2001;285:1711-8

328. Schwartz RS, Bayes-Genis A, Lesser JR, et al. Detecting vulnerable plaque using peripheral blood: inflammatory and cellular markers. J Interv Cardiol. 2003 Jun;16(3):231-42

329. Scott LJ, Curran MP, Figgitt DP. Rosuvastatin: a review of its use in the management of dyslipidemia. Am J Cardiovasc Drugs. 2004;4(2):117-38

330. Semenza GL. HIF-1, 0(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001 Oct5; 107(1): 1-3

331. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998;8:588-94

332. Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: a sticky business. Exp Cell Res 2006;312:651-8

333. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 1998;10:602-8

334. Sharaki OA, El-Guiziry DA, Abou-Zeid AA, et al. Clinical usefulness of basic fibroblast growth factor and E-selectin in patients with rheumatoid arthritis. Egypt J Immunol. 2004; 11(2):91-100

335. Shepherd J, Blauw GJ, Murphy MB, et al. On behalf of the PROSPER study group. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002;360:1623-30

336. Shepherd J, Cobbe SM, Ford I et al: Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N EnglJ Med, 1995;333(20):1301-7

337. Sherman JA, Hall A, Malenka DJ, et al. Humoral and cellular factors responsible for coronary collateral formation. Am J Cardiol. 2006 Nov 1;98(9): 1194-7

338. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685-700

339. Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 2002;105:788-93

340. Simons M, Post MJ. Therapeutic angiogenesis. In: Topol EJ, editor. Textbook of Interventional Cardiology. Lippincot: New York 2002

341. Singh NN, Ramji DP. The role of transforming growth factor-beta in atherosclerosis. Cytokine Growth Factor Rev. 2006 Dec;17(6):487-99

342. Skaletz-Rorowski A, Kureishi Y, Shiojima I, Walsh K. The pro- and antiangiogenic effects of statins. Semin Vase Med. 2004 Nov;4(4):395-400

343. Skaletz-Rorowski A, Walsh K. Statin therapy and angiogenesis. Curr Opin Lipidol. 2003 Dec; 14(6):599-603

344. Smadja DM, Cornet A, Emmerich J, et al. Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol.2007;23(4):223-39

345. Sohn M, Tan Y, Wang B, et al. Mechanisms of low-density lipoprotein-induced expression of connective tissue growth factor in human aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):Hl 624-34

346. Soma MR, Pagliarini P, Butti G, et al. Simvastatin, an inhibitor of cholesterol biosynthesis, shows synergistic effect with N,N'- Bis (2-chloroethyl)-N-nitrosourea and beta-interferon on human glioma cells. Cancer Res 1992;52:4348-5355

347. Stegmann TJ, Hoppert T, Schlurmann W, Gemeinhardt S. First angiogenic treatment of coronary heart disease by FGF-1: long-term results after 3 years. CVR 2000;1:5-10

348. Stern RH, Yang BB, Hounslow NJ, et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 2000;40:616-23

349. Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke. 2006 Jul;37(7): 1923-32

350. Streuli C. Extracellular matrix remodeling and cellular differentiation. Curr Opin Cell Biol 1999;11:634-40

351. Strey A, Janning A, Barth PI, Gerke V. Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett. 2002;517:261-6

352. Sugiyama M, Ohashi M, Takase H, et al. Effects of atorvastatin on inflammation and oxidative stress. Heart Vessels 2005 Jul;20(4): 133-6

353. Sun ZS, Zhou SH, Guan X. Impact of blood circulation on reendothelialization, restenosis and atrovastatin's restenosis prevention effects. Int J Cardiol. 2008 Aug 18;128(2):261-8

354. Sunderkôtter C, Goebeler M, Schulze-Osthoff K, et al. Macrophage-derived angiogenesis factors. Pharmacol Ther 1991;51(2): 195-216

355. Sunderkôtter C, Steinbrink K, Goebeler M, et al. Macrophages and angiogenesis. JLeukoc Biol 1994;55:410-22

356. Suzuki H, Murakami M, Shoji M, et al. Hepatocyte growth factor and vascular endothelial growth factor in ischaemic heart disease. Coron Artery Dis. 2003 Jun;14(4):301-7

357. Taddei S, Virdis A, Mattei P, et al. Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol. 1992;20 (suppl 12):S193-S195

358. Tamai O, Matsuoka H, Itabe H, et al. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation. 1997;95:76-82

359. Tamura K, Nakajima H, Rakue H, et al. Elevated circulating levels of basic fibroblast growth factor and vascular endothelial growth factor in patients with acute myocardial infarction. Jpn Cire J. 1999 May;63(5):357-61

360. Tashiro H, Shimokawa H, Sadamatu K, Yamamoto K. Prognostic significance of plasma concentrations of transforming growth factor-beta in patients with coronary artery disease. Coron Artery Dis. 2002 May;13(3): 139-43

361. Tashiro H, Shimokawa H, Yamamoto K, et al. Altered plasma levels of cytokines in patients with ischemic heart disease. Coron Artery Dis. 1997 Mar-Apr;8(3-4): 143-7

362. The Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7-22

363. Thomas MK, Narang D, Lakshmy R, et al. Correlation between inflammation and oxidative stress in normocholesterolemic coronary artery disease patients 'on' and 'off atorvastatin for short time intervals. Cardiovasc Drugs Ther. 2006 Feb;20(l):37-44

364. Trape J, Morales C, Molina R, et al. Vascular endothelial growth factor serum concentrations in hypercholesterolemic patients. Scand J Clin Lab Invest. 2006;66(3):261-7

365. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995;332:481-7

366. Tse HF, Lau CP. Therapeutic angiogenesis with bone marrow—derived stem cells. J Cardiovasc Pharmacol Ther. 2007 Jun; 12(2):89-97

367. Tse HF, Yiu KH, Lau CP. Bone marrow stem cell therapy for myocardial angiogenesis. Curr Vase Pharmacol. 2007 Apr;5(2):103-12

368. Turner M, Chantry D, Feldmann M. Transforming growth factor p induces the production of interleukin 6 by human peripheral blood mononuclear cells. Cytokine. 1990;2:211-6

369. Turu MM; Slevin M, Matou S, et al. C-reactive-protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression. BMC Cell Biol. 2008 Sep 2;9:47

370. Ueno H, Li JJ, Masuda S, et al. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vase Biol 1997;17:2453-60

371. Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res. 2002 Apr 5;90(6):737-44

372. Urbich C, Dimmler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95:343-53

373. Valdimarsdottir G, Goumans MJ, Rosendahl A, et al. Stimulation of Idl expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation. 2002; 106:2263-70

374. Van Weel V, de Vries M, Voshol PJ, et al. Hypercholesterolemia Reduces Collateral Artery Growth More Dominantly Than Hyperglycemia or Insulin Resistance in Mice. Circulation. 2006;114:1811-20

375. Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction. Eur Heart J 2006;27:237-45

376. Vasa M, Fichtischerer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103:2885-90

377. Vaughan CJ, Gotto AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol. 2000;35:1-10

378. Veillard NR, Steffens S, Burger F, et al. Differential expression patterns of proinflammatory and antiinflammatory mediators during atherogenesis in mice. Arterioscler Thromb Vase Biol. 2004;24:2339-44

379. Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens. 2005 Jan;14(l):33-7

380. Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002 Apr 23;105(16):1890-6

381. Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002 Aug 20;106(8):913-9

382. Villanueva FS. Molecular images of neovascularization: art for art's sake or form with a function? Circulation 2005; 111:3188-91

383. Vincent L, Chen W, Hong L, et al. Inhibition of endothelial cell migration by cerivastatin, an HMG-CoA reductase inhibitor: contribution to its antiangiogenic effect. FEBS Lett. 2001;495:159-166

384. Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vase Biol. 2005 0ct;25(10):2054-61

385. Voisine P, Bianchi C, Ruel M., et al. Inhibition of the cardiac angiogenic response to exogenous vascular endothelial growth factor Surgery. 2004 Aug; 136(2):407-15

386. Wahl SM, Allen JB, Weeks BS, et al. Transforming growth factor ß enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sei US A. 1993;90:4577-81

387. Wahre T, Yundestat A, Smith C, et al. Increased Expression of Interleukin-1 in Coronary Artery Disease With Downregulatory Effects of HMG-CoA Reductase Inhibitors. Circulation, 2004; Vol 109, N 16, 1966-72

388. Walter DH, Dimmeier S, Zeiher AM. Effects of statins on endothelium and endothelial progenitor cell recruitment. Semin Vase Med. 2004 Nov;4(4):385-93

389. Walter DFI, Dimmeier S. Endothelial progenitor cells: regulation and contribution to adult neovascularization. Herz 2002;27:579-88

390. Walter DH, Zeiher AM, Dimmeier S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis. 2004 Aug;15(5):235-42

391. Ward MR, Agrotis A, Kanellakis P, et al. Inhibition of protein tyrosine kinases attenuates increases in expression of transforming growth factor-ß isoforms and their receptors after arterial injury. Arterioscler Thromb Vase Biol. 1997;17:2461-70

392. Ward MR, Agrotis A, Kanellakis P, et al. Tranilast prevents activation of transforming growth factor system, leukocyte accumulation and neointimal growth in porcine coronary arteries after stenting. Arterioscler Thromb Vase Biol. 2002;22:940-8

393. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nat Med 1997;3:158-64

394. Wassmer SC, de Souza JB, Frere C, et al. TGF-ßl released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol. 2006;176:1180-4

395. Watabe T, Nishihara A, Mishima K, et al. TGF-ß receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol. 2003;163:1303-11

396. Waters D, Higginson L, Gladstone P, et al. Effects of cholesterol lowering on the progression of coronary atherosclerosis in women: a Canadian Coronary Atherosclerosis Intervention Trial (CCAIT) substudy. Circulation 1995;92:2404-10

397. Weintraub WS, Boccuzzi SJ, Klein JL, et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. N Engl J Med 1994;331:1331-7

398. Weis M, Heeschen C, Glassford AJ, et al. Statins have biphasic effects on angiogenesis. Circulation. 2002;105(6):739-45

399. Werner GS, Jandt E, Krack A, et al. Growth factors in the collateral circulation of chronic total coronary occlusions: relation to duration of occlusion and collateral function. Circulation. 2004;110:1940-5

400. Wilson PWF, Pencina M, Jacques P, et al. C-Reactive Protein and Reclassification of Cardiovascular Risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes. 2008; 1: 92-7

401. Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sei. 2002;43:849-57

402. Worthylake RA, Lemoine S, Watson JM, Burridge K. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol. 2001;154:147-60

403. Wright MJ, Wightman LM, Latchman DS, Marber MS. In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther 2001;8:1833-9

404. Wright MJ, Wightman LM, Lilley C, et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol 2001;96:227-36

405. Wröbel T, Poreba M, Mazur G, et al. Angiogenic and coagulation-fibrinolysis factors in non Hodgkin's lymphoma. Neoplasma. 2006;53(3):253-8

406. Xu HL, Tan HN, Wang FS, Tang W. Research advances of endostatin and its short internal fragments. Curr Protein Pept Sei. 2008 Jun;9(3):275-83

407. Yamagami S, Yokoo S, Mimura T, Amino S. Effects of TGF-ß2 on immune response-related gene expression profiles in the human corneal endothelium. Invest Ophthalmol Vis Sei. 2004;45:515-21

408. Yamamoto K, Morishita R, Tomita N, et al. Ribozyme oligonucleotides against transforming growth factor-ß inhibited neointimal formation after vascular injury in rat model. Circulation. 2000;102:1308-14

409. Yamawaki T, Yamada A, Fukumoto Y, et al. Statin therapy may prevent restenosis after successful coronary intervention, independent of lipid-lowering effect and CRP level. Fukuoka Igaku Zasshi. 2007 Jun;98(6):260-9

410. Yao EH, Fukuda N, Ueno T, et al. A Pyrrole-Imidazole Polyamide Targeting TGF-(beta)l Inhibits Restenosis and Preserves Endothelialization in the Injured Artery. Cardiovasc Res. 2008 Dec 20. Epub ahead of print.

411. Yin R, Feng J, Chen D, Wu H. Serum levels of vascular endothelial growth factor in patients with angina pectoris and acute myocardial infarction. Chin Med Sei J. 2000 Dec;15(4):205-9

412. Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9:694-701

413. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001;49:568-81

414. Zatterstrom UK, Felbor U, Fukai N, Olsen BR. Collagen XVIII/Endostatin Structure and Functional Role in Angiogenesis. CELL STRUCTURE AND FUNCTION 2000;25: 97-101

415. Zen K, Okigaki M, Hosokawa Y, et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response. J Mol Cell Cardiol 2006;40:799-809

416. Zheng W, Seftor EA, Meininger CJ, et al. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol, Heart Circ Physiol 2001;280:H909-17

417. Zhigang W, Zhiyu L, Haitao R, et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 2004;28:395-8

418. Zhou X, Johnston TP, Johansson D, et al. Hypercholesterolemia leads to elevated TGF-beta 1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. Atherosclerosis. 2008 Oct 25. Epub ahead of print.

419. Zhou Y, Liu X, She M. Molecular basis for the effect of lipid lowering drugs on growth factors after de-endothelialization. Chin Med J (Engl). 2001 Sep;l 14(9):976-82