Автореферат диссертации по медицине на тему Течение ишемической болезни сердца при метаболическом синдроме
□03493200
Па правах рукописи
ФИРОВА Эльвира Михайловна
ТЕЧЕНИЕ ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА ПРИ МЕТАБОЛИЧЕСКОМ СИНДРОМЕ
14.01.05 - Кардиология 03.01.04 - Биохимия
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата медицинских наук
1 1 МАР 2010
Санкт - Петербург 2010
003493200
Работа выполнена в Отделе биохимии Научно-исследовательского института экспериментальной медицины СЗО РАМН.
Научные руководители:
доктор медицинских наук, профессор Денисенко Александр Дорофеевич доктор медицинских наук, доцент Гордиенко Александр Болеславович
Официальные оппоненты:
доктор медицинских наук, профессор Булычев Александр Борисович доктор медицинских наук, профессор Дорофейков Владимир Владимирович
Ведущее учреждение:
ГОУ ВПО «Санкт-петербургская государственная медицинская академия имени И.И.Мечникова».
Защита диссертации состоится «22» марта 2010года в «11» часов на заседании совета по защите докторских и кандидатских диссертаций Д 215.002.06 при ФГОУ ВПО «Военно-медицинская академия им. С.М.Кирова» МО РФ по адресу. 194044, Санкт- Петербург, ул. Акад. Лебедева, д.6.
С диссертацией можно ознакомиться в фундаментальной библиотеке ФГОУ ВПО «Военно-медицинская академия им. С.М.Кирова» МО РФ.
Автореферат разослан < февраля 2010г.
Ученый секретарь
доктор медицинских наук,
профессор Филиппов Александр Евгеньевич
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность
В последнее десятилетие значительно возрос интерес исследователей к проблеме метаболического синдрома (МС). Это обусловлено как широким распространением его в популяции, так и значительным увеличением риска развития сердечно-сосудистых заболеваний (ССЗ) и, прежде всего, ишемической болезни сердца (ИБС) у пациентов, страдающих МС. Вплоть до настоящего времени недостаточно изученным остается вопрос о влиянии МС и его проявлений на течение ИБС. В частности, не выяснено, в какой степени МС усугубляет такие сопутствующие ИБС нарушения со стороны сердца, как снижение функционального резерва миокарда, гипертрофия и ремоделирование левого желудочка (ЛЖ), систолическая и диастолическая дисфункция миокарда ЛЖ.
Механизмы развития метаболического синдрома остаются окончательно не выясненными. Согласно современным представлениям, одним из ведущих патогенетических факторов развития МС является ожирение и/или абдоминальный тип распределения жировой ткани. Предполагается, чго важными фактором в патогенезе некоторых проявлений МС могут играть повышение секреции в кровь жировой тканью неэстерифицированных жирных кислот (НЭЖК) и изменения продукции этой тканью биологически активных белков - адипоки-нов. Но если участие НЭЖК и адипокинов в патогенезе МС более или менее известно, то влияние данных факторов на клиническое течение ИБС остается менее изученным.
Оценка влияния клинико-биохимических проявлений МС, в том числе содержания НЭЖК и адипокинов в крови, на течение ИБС позволит выявить наиболее неблагоприятные прогностические факторы, осложняющие течение ИБС, что будет способствовать разработке новых методов диагностики, профилактики и лечения данного заболевания. Цель и задачи исследования
Целью настоящего исследования являлось изучение роли МС и его проявлений в течении ИБС. В связи с этим нами были поставлены следующие задачи:
1. Сопоставить показатели толерантности к физической нагрузке и ультразвукового исследования сердца у пациентов с МС и без МС.
2. Изучить взаимосвязь параметров обмена углеводов и липидов и содержания в крови адипонектина и лептина с показателями велоэргометрической про бы и эхокардиографии (ЭхоКГ).
3. Оценить роль адипонектина и лептина в развитии инсулинорезистснтно-сти (ИР) и атерогенной дислипидемии (аДЛП) у пациентов с ИБС.
4. Выявить ведущие метаболические факторы, определяющие морфофунк-циональное состояние миокарда и его функциональные нарушения при ИБС.
Основные положения, выносимые на защиту
1. Ведущими факторами, способствующими формированию гипертрофии и
ремоделирования миокарда ЛЖ у пациентов с ИБС, являются такие важные
компоненты МС, как артериальная гипертензия (АГ), инсулинорезистент-ность и ожирение, в то время как на систолическую функцию ЛЖ негативно влияют инсулинорезистентность и абдоминальное распределение жировой ткани. В формировании указанных морфофункциональных нарушений миокарда НЭЖК и адипокины прямой роли не играют.
2. Важным фактором, определяющим снижение толерантности к физической нагрузке и функционального резерва миокарда у пациентов с ИБС, является инсулинорезистентность. Уменьшению функционального резерва миокарда также способствует гипоальфахолестеринемия. НЭЖК и адипокины в снижении толерантности к физической нагрузке и функционального резерва миокарда прямого участия не принимают,
3. Установлено, что концентрации в крови адипонектина, лептина и НЭЖК у женщин являются независимыми детерминантами индекса НОМА; у мужчин при этом данный показатель определяется уровнем НЭЖК. В свою очередь, на концентрацию НЭЖК у них оказывает независимое влияние уровень адипонектина. Тем самым, адипокины и НЭЖК способны оказывать влияние на морфофункциональные нарушения миокарда при ИБС косвенно - через формирование ИР.
4. Концентрации в крови адипонектина и лептина не оказывают прямого воздействия на уровень в крови триглицеридов (ТГ) и холестерина (ХС) липо-протеинов высокой плотности (ХС ЛВП). При этом уровень адипонектина оказывая прямое влияние на метаболизм НЭЖК и глюкозы, может, таким образом, опосредованно влиять и на развитие аДЛП.
Научная новизна работы
Впервые проведена комплексная оценка участия инсулинорезистентно-сти, атерогенной дислипидемии, повышения уровня в крови НЭЖК, дисбаланса адипокинов в понижении толерантности к физической нагрузке и функционального резерва миокарда, в формировании структурно-функциональных нарушений миокарда при ИБС. Показано, что адипокины и НЭЖК прямой роли в их развитии не играют. Ведущими факторами, влияющими на данные нарушения, являются АГ, ожирение, ИР и концентрация в крови ХС ЛВП.
Впервые выявлена у мужчин независимая обратная связь содержания в крови адипонектина с концентрацией НЭЖК. Показано при этом, что содержание адипонектина является независимой детерминантой концентрации НЭЖК. Впервые установлено, что у женщин концентрации в крови адипонектина, лептина и НЭЖК являются независимыми детерминантами ИР. Теоретическое и практическое значение работы
Результаты настоящего исследования выявили особенности участия адипонектина, лептина и НЭЖК в формировании морфофункциональных нарушений миокарда у больных ИБС и в клиническом течении данного заболевания, оцененном по реакции на пробу с физической нагрузкой. Показано, что действие адипокинов и НЭЖК на развитие структурных и функциональных нарушений при данном заболевании опосредуется влиянием данных факторов на развитие ИР и гипоальфахолестеринемии.
Практическая значимость настоящего исследования определяется обнаружением того, что оценка содержания в крови адипонектина, лептина и НЭЖК дает лишь косвенное представление о наличии и, вероятно, о прогнозе морфо-функциональных расстройств при ИБС. В то же время, ориентируясь на такие показатели, как уровень артериального давления (АД), индекс массы тела (ИМТ) (либо окружность талии, ОТ), состояние инсулинчувствительности и содержание в крови ХС ЛВП, можно с большей долей вероятности предполагать наличие и прогноз того или иного варианта течения данного заболевания. Апробация работы
По теме диссертации опубликовано 11 печатных работ, в том числе 5 публикаций в центральных рецензируемых изданиях, рекомендованных ВАК. Материалы диссертации были представлены на следующих конференциях и симпозиумах: "Современная кардиология: наука и практика" (Санкт-Петербург, 2007), конференция МАПО "Актуальные вопросы клинической и экспериментальной медицины" (Санкт-Петербург, 2007), 10-й Юбилейный научно-образовательный форум "Кардиология 2008" (Москва, 2008), IV Всероссийский диабетологический конгресс (Москва, 2008), 11 -я Всероссийская медико-биологическая конференция молодых исследователей "Человек и его здоровье" (Санкт-Петербург, 2008), V конференция молодых ученых России с международным участием "Фундаментальные науки и прогресс клинической медицины" (Москва, 2008).
Работа поддержана грантами РФФИ 06-04-90818 и 08-04-01715. Структура и объем диссертации
Диссертация состоит из следующих разделов: Введение, Обзор литературы, Материалы и методы, Результаты исследования и обсуждение, Выводы, Практические рекомендации, Список цитируемой литературы и Приложения. Работа изложена на 139 страницах машинописного текста, иллюстрирована 11 рисунками и 22 таблицами. Библиографический список использованной литературы содержит 335 источников.
МАТЕРИАЛЫ И МЕТОДЫ
Пациенты
В исследование включено 158 пациентов (90 женщин и 68 мужчин) в возрасте 29 - 83 лет (средний возраст 57,5 ± 9,2 лет). МС, выставленный по критериям ATP III [Executive Summary..., 2001], наблюдался у 106 человек. Группу контроля (пациенты без МС) составили 52 человека. У всех обследуемых была диагностирована АГ согласно критериям, представленным на 7 докладе Объединенного Национального Комитета США по профилактике, выявлению, оценке и лечению АГ (JNC 7) [Chobanian et al, 2003]. Также у всех пациентов наблюдалась стабильная стенокардия 2 ф.к. Из них у 27 (17%) пациентов в анамнезе был острый инфаркт миокарда. Длительность ИБС варьировала от 1 до 10 лет. Симптомов сердечной недостаточности у пациентов не наблюдалось. У 35 (23%) пациентов был сахарный диабет 2 типа (СД 2) в стадиях компенсации и субкомпенсации, без осложнений, выставленный согласно критериям ВОЗ 1999 года [World Health Organization..., 1999]. Ожирение ИМТ > 30 кг/м2) имело ме-
сто у 67 (43%) человек, среди них ожирение II и III степени - у 20 (30%) и 4 (6%) пациентов, соответственно. ИМТ рассчитывали по формуле ИМТ = масса тела (кг)/рост2 (м2). На момент обследования пациенты месяц соблюдали диету с ограничением потребления животных жиров и углеводов, получали антианги-нальные препараты (нитраты, бета-блокаторы, антагонисты кальция), аспирин, ингибиторы АПФ. В исследование не включали пациентов с гиперфункцией щитовидной железы, холестазом, наличием декомпенсированного СД, а также принимавших гиполипидемические или гипогликемические препараты. Определение биохимических показателей.
Определение уровня глюкозы, показателей липидного спектра проводили в плазме венозной крови, взятой утром натощак после 12-часового голодания. В качестве антикоагулянта использовали 3,8%-й раствор цитрата. Плазму получали в течение 30 мин после взятия крови, замороживали и хранили при t = -20°С.
Содержание общего ХС (ОХС) и ТГ определяли энзиматическим методом наборами реактивов "Биокон" (Германия) на анализаторе "ChemWell" (США). Концентрацию ХС ЛВП определяли прямым методом с использованием антител к ЛВП "Биокон" (Германия) на том же анализаторе. Содержание ХС лино-протеинов низкой плотности (ХС ЛНП), ммоль/л, рассчитывали по формуле Фридвальда в модификации Д. Б. Шестова: ХС ЛНП = ОХС - (ТГ/2,2 + ХС ЛВП) [Friedewald et а/, 1972; Шестов Д.Б., 1985]. Коэффициент атерогенности (КА) рассчитывали по формуле: КА = (ОХС - ХС ЛВП)/ХС ЛВП [Климов А.Н., 1977]. Концентрацию НЭЖК определяли энзиматическим методом с помощью наборов фирмы "Randox" на спектрофотометре СФ-26 "ЛОМО" (Россия).
Содержание глюкозы определяли глюкозооксидазным методом на анализаторе "EOS-BRAVO" (Hospitex, Швеция). Уровень инсулина и лептина оценивали "сэндвич"-вариантом иммуноферментного анализа (ИФА) с использованием наборов фирмы "DRG" (Германия) на микропланшетном ридере "Е1х800" фирмы "ФинБио" (Финляндия). Для оценки степени инсулинорезистентности (ИР) рассчитывали индекс НОМА (Homeostasis model assessment) по формуле: НОМА = инсулин, мкЕД/мл * глюкоза, ммоль/л /22,5 [Matthews et al, 1985]. Для оценки функции ß-клеток рассчитывали индекс HOMA-ßcell по формуле: 20 * инсулин, мкЕД/мл /(глюкоза, ммоль/л - 3,5) [Matthews et al, 1985].
Содержание адипонектина определяли при помощи конкурентного варианта ИФА на наборах фирмы "BioVendor" (Чехия).
Оценка функционального состояния сердечно-сосудистой системы и мор-фофункционального состояния миокарда
Исследование функционального состояния сердечно-сосудистой системы проводили с помощью пороговой пробы с физической нагрузкой на велоэрго-метрическом комплексе Marquette Hellige 900 ERG, Case 16 (США) с компьютерным анализом ЭКГ. Тест проводили в утренние часы, на фоне отмены медикаментов в день проведения. Применялась ступенчато-нарастающая схема нагрузки, предусматривающая увеличение ее мощности на 30 Вт через каждые 3 минуты, при этом начальная мощность составляла 30 Вт, а скорость вращения педалей - 60 оборотов в минуту. В процессе проведения пробы и в восстанови-
тельном периоде осуществлялся постоянный мониторный контроль ЭКГ в 12 отведениях и ее запись в конце каждой минуты. В восстановительном периоде регистрация ЭКГ продолжалась по крайней мере в течение 6 минут. В случаях, когда ЭКГ не возвращалась к исходной в течение указанного времени, наблюдение продолжали дальше. Критериями прекращения пробы служили: достижение намеченного субмаксимального (90% от максимально возможного) уровня нагрузки, определяемого по частоте сердечных сокращений; возникновение приступа типичных ангинозных болей; появление на ЭКГ горизонтальной или косонисходящей депрессии или подъема сегмента ST на 1 мм и более, продолжительностью 0,08 секунды от точки J; достоверное снижение артериального давления (АД) в процессе нарастающей нагрузки; появление серьезных нарушений ритма и проводимости. Кроме того, пробу прекращали при возникновении болей в икроножных мышцах, одышки, общей усталости, неадекватного подъема АД. В таких случаях проба считалась неполной.
В качестве показателей физической работоспособности оценивались время работы (в мин), ее максимальная мощность (в Вт), двойное произведение (ДП), а также объем выполненной работы (ОВР). Кроме того, оценивались хро-нотропный (ХроноР) и инотропный резервы (ИноР).
ЭхоКГ проводили на аппарате SSD5500 PHI (Aloka, Япония). С помощью одно- и двухмерной ЭхоКГ количественно оценивался диастолический размер (диаметр) полости ЛЖ (ДДЛЖ) и его диастолическая толщина — в конце диастолы (начало комплекса QRS на ЭКГ). Так же измерялась толщина межжелудочковой перегородки и задней стенки ЛЖ. В последующем производилось определение систолических размеров перечисленных объектов, включая систолический размер (диаметр) полости ЛЖ (СДЛЖ). Исследование сократительной способности миокарда определялось по расчетным показателям фракции укорочения (ФУ), объема ЛЖ и фракции выброса (ФВ). Статистическая обработка результатов
Статистическая обработка полученных данных проведена на компьютере с использованием пакета программ "Statistica 6.0" ("StatSoft", США). Данные представлены в виде средних арифметических значений и стандартных отклонений (М ± SD). В статистическом анализе все параметры, за исключением возраста и показателей антропометрии, с целыо увеличения нормальности распределения трансформировали в логарифмированную форму. Анализ отличий между 2-мя группами пациентов проводили с помощью непарного t-критерия Стыоденга. Анализ отличий показателей среди 3-х и более групп обследуемых оценивали с помощью однофакторного дисперсионного анализа (one-way ANOVA test). Среди показателей, у которых выявили в группах достоверные изменения (Р < 0,05), для попарных сравнений использовали апостериорный критерий Bonferroni (Post hoc Bonferroni test). Для относительных величин (частота СД 2 типа, соотношение полов) применяли критерий х2- Для выявления связей между различными параметрами также проводили корреляционный анализ по Пирсону, в том числе с контролем по полу, возрасту и ИМТ, а также множественный линейный регрессионный анализ.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
При обследовании, как и ожидалось, было выявлено, что у пациентов с МС имелось ожирение по абдоминальному фенотипу (увеличение ИМТ, окружности талии (ОТ) и отношения ОТ/ окружности бедер (ОБ)), а также признаки ИР (повышение концентраций глюкозы, инсулина и индекса НОМА). Кроме того, у больных с МС, по сравнению с группой сравнения, отмечалось повышение частоты СД 2 типа, концентрации НЭЖК, а также увеличение ате-рогенности липидного спектра крови (повышение КА и содержания в крови ТГ, ОХС и снижение - ХС ЛВП). Кроме того, у больных этой группы наблюдалось более низкое содержание в крови адипонектина и более высокая концентрация лептина по сравнению с контролем. Таким образом, у пациентов с МС обнаружен адипокиновый дисбаланс, что согласуется с данными других авторов [Gan-nage-Yared et al, 2006; You et al, 2008]
Оценка показателей толерантности к физической нагрузке и морфофунк-циональных параметров миокарда у пациентов с МС
Таблица 1.
Результаты велозргометрии и ультразвукового исследования сердца в контрольной группе и у пациентов с метаболическим синдромом.
Показатель Контроль МС
N 52 106
М/Ж 31/21 37/69
Время работы, мин. 8,9 ± 3,1 7,5 ±3,0"
Мощность, Вт. 95,2 ±33,5 86,9 ±31,5
ОВР, Втхмин. 558,6 ±310,3 436,3 ±292, Г
ДП, ед. 260,0 ± 49,4 263,6 ±49,9
ХроноР, удЛнш 68,5 ± 16,7 60,3 ± 17,1"
ИноР, мм рт. ст. 62,9 ± 22,2 66,1 ±26,0
ТМЖП, мм ИЛ ±2,0 11,8 ±2,0
ТЗСЛЖ, мм 10,5 ± 1,8 10,9 ± 1,7
ДДЛЖ, мм 45,8 ±5,3 47,1 ±6,6
ММЛЖ, г 208,1 ±59,1 235,0 ±73,0'
ОТС 0,5 ± ОД 0,5 ± 0,1
ФВ, % 66,1 ±6,0 65,1 ±8,5
1. М - мужчины, Ж -
женщины, ТЗСЛЖ - толщина задней стенки левого желудочка, ТМЖП - толщина межжелудочковой перегородки, ОТС - относительная толщина стенок.
У пациентов с МС наблюдается ухудшение переносимости физической нагрузки (уменьшение времени и объема выполненной работы), снижение функционального резерва миокарда, в частности ХроноР, а также повышение масса миокарда левого желудочка (ММЛЖ), что указывает на наличие гипертрофии миокарда ЛЖ (табл. 1).
Помимо этого, среди пациентов с МС увеличена доля тех, кто не перенёс нагрузочную пробу вследствие ишемической реакции - 11,8; р < 0,005). При этом частота непереносимости пробы по другим причинам (одышка, повышение АД и пр.) среди групп не отличалась (рис 1).
Контроль
Метаболический синдром
шпроба отрицательная
& ишемическан реакция
*ПЛОХЕЯ
л('реносимос"ьпо другим причинам
Рис.1. Распределение пациентов по переносимости велоэргометрической пробы в группах контроля (А) и метаболического синдрома (Б)
Таким образом, для пациентов с МС. характерны структурные изменения миокарда в виде ГЛЖ, которые сопровождаются снижением его функционального резерва и ухудшением переносимости физических нагрузок.
Роль адипокинов и метаболических факторов в формировании морфофункциональных нарушений миокарда
Для оценки роли изученных клинико-метаболических факторов, в патогенезе структурных изменений миокарда были сформированы группы пациентов с нормальной геометрией ЛЖ, с концентрическим ремоделировани-ем ЛЖ, с концентрической ГЛЖ и с эксцентрической ГЛЖ (табл.2).
Оказалось, что у пациентов с концентрической гипертрофией ЛЖ по сравнению с лицами с нормальной геометрией ЛЖ выявились более высокие значения САД и концентрации в крови лептина, притом, что ИМТ у пациентов данной группы имел лишь тенденцию к увеличению (р = 0,06). Поскольку концентрации в крови адипонектина и лептина зависят от пола, мы провели сопоставление уровней этих адипокинов со струкгурными параметрами миокарда у мужчин и женщин отдельно.
Таблица 2.
Клинико-метаболические показатели у пациентов с различной геометрией левого желудочка __________
Параметры Нормальная геометрия Концентрическое ремоделиро вание Концентрическая ГЛЖ (КГЛЖ) Эксцентрическая ГЛЖ (ЭГЛЖ) Р
N 34 56 38 30
М/Ж 18/16 28/28 43/25 9/21 -
Возраст, годы 56,0±9,5 57,3±9,2 59,0±8,4 57,6±10,4 Н.д.
САД, мм рт. ст. 126,8 ±11,6 133,4 ± 14,1 139,7 ± 14,8" 129,7± 13,8 <0,001
ДАД, мм рт. ст. 79,7±9,01 82,9 ± 9,7 83,8 ± 9,3 81,4±10,2 Н.д.
ИМТ, кг/м' 27,6 ± 4,7 29,1 ±4,8 30,6 ±5,4 29,4 ± 5,3 Н.д.
ОТ, см 94,3±15.4 96,0±13,3 100,8± 12,6 97,6± 16,0 Н.д.
ОТ/ОБ 1,0 ¿0,1 1,0 ±0,1 1,0 ± 0,1 1,0 ±0,1 Н.д.
Частота СД 2, % 20,6 21,4 32,4 17,2А -
Глюкоза, ммоль/л 5,7 ± 1,5 5,9 ± 1,9 6,1 ± 1,6 5,8 ± 1,6 Н.д.
Инсулин, мкЕД/мл 9,5 ± 6,3 10,8 ±7,8 11,1 ±5,9 8,8 ± 4,9 Н.д.
Индекс НОМА 2,4 ± 1,5 2,9 ± 2,3 3,1 ±2,0 2,3 ± 1,4 Н.д.
НЭЖК, ммоль/л 0,4 ±0,2 0,3 ± 0,2 0,4 ± ОД 0,3 ± 0,2 Н.д.
ТГ, ммоль/л 2,9 ± 2,4 2,4 ± 1,6 3,6 ±3,2 2,5 ± 1,6 Н.д.
ОХС, ммоль/л 6,7 ± 1,6 6,3 ± 1,5 6,8 ±2,2 6,7 ± 1,5 Н.д.
ХС ЛНП, ммоль/л 4,4 ± 1,5 4,2 ± 1,6 4,2 ± 1,8 4,5 ± 1,5 Н.д.
ХС ЛВП, ммоль/л 1,0 ±0,2 1,0 ±0,2 1,0 ±0,2 1,0 ±0,1 Н.д.
КА 5,7 ± 1,9 5,2 ± 1,9 6,1 ± 2,8 5,6 ±1,9 ' Н.д.
Адипонектин, мкг/мл 6,1 ±4,4 6,3 ± 3,8 5,9 ±2,67 6,8 ± 3,5 Н.д.
Лептин, нг/мл 11,1±7,7 17,9±19,5 23,8±23?9* 19,6±17,0 <0,05
ИМЛЖ, г/и1 100,7 ± 18,6 100,5 ± 20,8 143,5 ± 23,4''"*• 143,7 ± 33,5'"' <0,0001
отс 0,4 ± 0,1 0,5±0,1"" о,б±о,Г"" 0,4±0,1'" АЛ <0,0001
Примечание: Р - значения достоверности отличий среди групп, определенные согласно од-нофакторному дисперсионному анализу. Отличия достоверны по сравнению с первой группой при: * - р < 0,05, *' - р < 0,001,- р < 0,0001, по сравнению со второй группой при - р < 0,01, ** - р < 0,0001, по сравнению с третьей группой при А - р < 0,05, лл - р < 0,0001. Н.д. -не достоверно. ИМЛЖ - индекс массы миокарда левого желудочка. Остальные обозначения - как в предыдущей таблице.
14 12 10 8 6 4 2 —10
(1орма
КГЛЖ
«и»
П
И
.ЙШЙИ эглж
«3 мужчины Ж женщины
60 4
;
ТВ
т '
¡МИ ним ; .....,........шшшшш
КГЛЖ эглж
# мужчины ^ женщины
Норма
Рис. 2. Содержание в крови адипонектина (А) и лептина (Б) у пациентов с различной геометрией левого желудочка
Примечание: * - р < 0,05 по сравнению с нормальной группой. Конц. ремоделир. - концентрическое ремоделирование, КГЛЖ - концентрическая гипертрофия, ЭГЛЖ - эксцентрическое ремоделирование.
Содержание в крови адипонектина как у мужчин, так и у женщин не было связано со структурными изменениями миокарда, Тогда как у женщин при КГЛЖ концентрация лептина была более высокой, чем у пациенток с нормальной геометрией ЛЖ (рис. 2).
Для более детальной оценки роли метаболических факторов в патогенезе структурных изменений миокарда был проведен регрессионный анализ.
Было установлено, что, уровень САД являлся независимой детерминан-той как ММЛЖ, так и ОТС, в то время как величина ИМТ оказывала влияние только на ММЛЖ, а величина индекса НОМА только на ОТС (табл.3).
Таблица 3.
Результаты множественного регрессионного анализа влияния метаболических факторов на массу миокарда и относительную толщину стенок левого
Независимые детерминанты Зависимые переменные
ММЛЖ ОТС
Пол 0,46* -0,07
Возраст, годы -0,03 0,05
НМТ, кг/м2 0,35" 0,22
Индекс НОМА 0,03 0,26*
НЭЖК, ммоль/л -0,16 0,04
ТГ, моль/л 0,05 -0,04
ОХС, моль/л -0,05 -0,12
ХС ЛВП, ммоль/л -0,05 0,05
Адипонектин, мкг/мл 0,11 0,15
Лептин, иг/мл 0,09 -0,2
САД, им рт. ст. 0,22" 0,38"
ДАД, мм рт. ст. -0,17 -0,24
0,32; р < 0,0001 0,15; р = 0,07
Примечание: Приводятся значения регрессионных коэффициентов р. - р < 0,05.
В следующей части работы мы попытались проанализировать участие изученных клинико-метаболических факторов в формировании функциональных нарушений миокарда, в частности его систолической дисфункции. С этой целью были сформированы группы пациентов с высокими и сниженными значениями ФВ и ФУ (табл. 4).
У пациентов с высокой ФУ наблюдался более низкий уровень инсулина в крови и индекс НОМА а также более низкое отношение ОТ/ОБ, чем у лиц с низкой ФУ. Кроме того, снижение ФВ и ФУ сопровождалось уменьшением концентрации адипонектина в крови. Однако данное наблюдение может объясняться тем, что группы с более низкими значениями ФВ и ФУ характеризуются более высоким возрастом обследуемых, а также преобладанием женщин. И действительно, при проведении корреляционного анализа с контролем по полу, возрасту и отношению ОТ/ОБ взаимосвязь ФВ и ФУ с концентрацией адипонектина отсутствовала. При этом была установлена обратная связь ФУ с параметрами ИР (концентрацией инсулина и индексом НОМА).
С помощью регрессионного анализа выяснилось, что независимой детер-минантой ФВ является отношение ОТ/ОБ, в то время как ФУ определяется влиянием отношения ОТ/ОБ и индекса НОМА (табл. 5).
Таблица 4.
Клинико-мегаболические параметры у лиц с различной систолической функцией миокарда______ __________
Параметры Фракция выброса, % Фракция укорочения, %
< 60% > 75% < 35% > 35%
N 29 17 53 103
М/Ж 20/9 5/12 28/25 39/64
Возраст, годы 55,2 ± 7,3 62,9 ±7,0' 54,7 ± 8,3 58,9 ± 9,5*~
САД, мм£т. ст. 131,0 ± 11,7 137,3±10,5' 130,5 ± 12,5 134,0 ± 15,2
ДАД, мм рт. ст. 82,4 ± 8,3 82,5 ±8,7 81,2 ± 9,1 82,6 ±9,8 ~1
ИМТ. кг/м^ 29,9 ±4,9 30,0 ±4,9 29,3 ±4,1 29,1 ±5,5
ОТ, см 100,9 ± 14,6 96,0 ± 16,0 99,2 ± 12,7 96,0 ± 14,9
ОТ/ОБ 1,0 ± 0,1 1,0 ±0,1 1,0 ±0,1 0,9 ±0,1*
Частота СД 2, % 27,6 16,7 24,5 22,3
Глюкоза, ммоль/л 6,0 ± 1,9 5,1 ±0,7 6,0 ± 1,9 5,8 ± 1,5
Инсулин, мкЕД/мл 12,2 ± 10,0 8,2 ± 3,5 13,4 ± 10,2 9,1 ±6,0"
Индекс НОМА 3,2 ±2,4 1,9 ± 1,0 3,6 ±2,5 2,4 ± 1,8"
НЭЖК, моль/л 0,4 ± 0,2 0,4 ± 0,2 0,4 ± 0,2 0,4 ±0,2
ТГ, ммоль/л 3,1 ±2,1 3,7 ±3,9 3,0 ± 2,2 2,7 ±2,4
ОХС, ммоль/л 6,4 ± 1,1 6,9 ±2,8 6,4 ± 1,4 6,6 ± 1,8
ХС ЛНП, ммоль/л 3,9 ± 1,5 4,2 ± 1,4 4,1 ± 1,6 4,4 ± 1,6
ХС ЛВП, ммоль/л 1,0±0,1 1,0 ±0,2 1,0 ±0,1 1,0 ±0,2
КА 5,4 ± 1,6 6,3 ±3,7 5,4 ± 1,6 5,7 ± 2,4
Адипонектин, мкг/мл 5,1 ±3,1 7,9 ± 2,2* 5,3 ± 3,0 6,7 ± 3,9'
Лептин, нг/мл 17,6 ± 18,3 29,2 ± 29,9 16,7 ± 16,1 18,9 ±20,0
ФВ, % 54,0 ± 5,9 77,5 ± 1,8"' 58,4 ±6,3 69,0 ± 5,9"'
ФУ, % 30,8 ± 5,8 45,7 ±3,5"' 30,5 ±4,1 40,6 ± 4,0"""
Примечание:' - р < 0,05, - р < 0,01, - р < 0,0001 по сравнению с низкими значениями ФВ и ФУ. Остальные обозначения - как в предыдущих таблицах.
Таким образом, непосредственную роль в развитии систолической дисфункции миокарда у пациентов с МС и ИБС играют ожирение и/или абдоминальное распределение жировой ткани и ИР. Обращает на себя внимание тот факт, что на развитие систолической дисфункции не оказывает влияния ИМТ, т.е. общее ожирение, но важно наличие абдоминального ожирения. В литературе имеются указания на наличие взаимосвязи между наличием ожирения и ИР с систолической и диастолической дисфункцией миокарда [Wong et al, 2004; Iler-cii et al, 2002; Lee et al, 1997; Devereux et al, 2000].
Кроме того, полученные данные свидетельствуют о том, что ни концентрации адипокинов, ни уровни липидов не оказывают прямого влияния ни на развитие систолической дисфункции миокарда у пациентов, ни на формирование его структурных нарушений.
Понижение систолической функции при ожирении и ИР, которое было выявлено и в настоящем исследовании, может быть обусловлено гипертрофией мышечной стенки (вследствие гипертрофии кардиомиоцитов и кардиосклероза). Вследствие этого повышается жесткость и ригидность миокарда, что приводит к развитию его диастолической и систолической дисфункции. Как уже указывалось, роль адипокинов в формировании нарушений структуры и функ-
ции миокарда при МС остается малоизученной. Несмотря на то, что в настоящем исследовании нам не удалось выявить взаимосвязь между содержанием в крови адипонектина и лептина с морфофункционадышми параметрами миокарда, их участие в развитии кардиомиопатии при МС может быть косвенным -посредством формирования ИР.
Таблица 5.
Результаты множественного регрессионного анализа влияния метаболических факторов на фракцию выброса и фракцию укорочения
Независимые детерминанты Зависимые переменные
ФВ ФУ
Пол -0,21 -0,16
Возраст, годы 0,07 0,07
ОТ/ОБ -0,32* -0,23*
Индекс НОМА -0,05 -0,21*
НЭЖК, ммоль/л -0,13 -0,08
ТГ, ммоль/л 0,17 0,08
ОХС", ммоль/л 0,04 0,12
ХС ЛВП, ммоль/л 0 0,06
Адипонектин, мкг/мл 0,11 -0,02
Лептин, нг/мл -0,03 -0,08
САД. мм рт. ст. 0,19 0,16
ДАД, мм рт. ст. 0,12 0,19
0,2; р < 0,01 0,18; р< 0,01
Примечание: Приводятся значения регрессионных коэффициентов р. - р < 0,05.
Далее было проанализирована роль изученных клинико-метаболических факторов в развитии таких проявлений, как снижение функциональног о резерва миокарда и снижение толерантности к физической нагрузке.
С этой целью все пациенты были разделены на 3 группы по результатам велоэргометрической пробы: лица, полностью прошедшие пробу (отрицательная проба); пациенты, у которых во время проведения пробы развились ангинозные боли и/или признаки ишемии миокарда на ЭКГ (ишемическая реакция); пациенты, которые не смогли полностью пройти пробу по другим причинам (головная боль, резкое повышение АД и ряд других). Как видно, снижение толерантности к физической нагрузке проявлялось в уменьшении значений таких параметров, как время работы, мощность предъявляемой нагрузки, объем выполненной работы, а также показателей функционального резерва миокарда, в частности ДП и ХроноР. Кроме того, у пациентов с ишемической реакцией наблюдается снижение ФУ (табл. 6).
Таблица 6.
Клинико-метаболические показатели у лиц с различной толерантностью к физической нагрузке.
Параметры Проба Ишемическая Не перенесли
отрицатель-ная реакция пробу по др. причинам
N 44 19 95 Р
М/Ж 20/24 9/10 39/56 -
Возраст, годы 52,8 ± 10,2 58,7 ± 5,3' 59,2 ±8,7"' <0,0001
Время работы, мин. 9,9 ±2,9 6,5 ±3,2"' 7,4 ±2,8"' <0,0001
Мощность, Вт. 110,7 ±30,7 75,8 ±27,Г" 82,7 ± 29,4'" <0,0001
ОВР, Втхмнн. 657,6±302,56 361,6±283,1" 418,0±271,4"' <0,0001
ДП, ед. 298,8 ±35,0 246,3 ± 56,0"' 250,3±45,8"* <0,0001
ХроноР, уд./мин. 73,9 ±16,7 50,1 ± 15,7"' 60,9 ± 15,4"' <0,0001
ИноР, мм рт. ст. 74,1 ±25,5 64,5 ±31,2 61,0± 21,8' <0,05
ММЛЖ, г 214,2 ±55,2 240,7 ± 98,0 229,5 ± 67,8 Н.д.
ОТС 0,5 ±0,1 0,5 ±0,1 "0,5 ± 0,1 Н.д.
ФВ, % 67,1 ±7,8 62,2 ± 10,5 65,4 ±7,0 Н.д.
ФУ, % 38,6 ±5,1 34,3 ± 8,1' 37.2 ±6,2 <0,05
САД, мм рт. ст. 129,4 ± 13,6 136,8 ± 13,8 133,3 ± 14,6 Н.д.
ДАД, мм рт. ст. 81,4 ± 10,5 83,4 ± 10,6 82,2 ± 9,0 Н.д.
ИМТ, кг/м2 28,0 ±4,6 30,7 ±3,6 П29,5 ± 5,3 "1 Н.д.
ОТ, см 92,8 ± 14,1 103,3 ± 6,9' 98,2 ± 14,5 <0,05
ОТ/ОБ 0,9 ±0,1 1,0 ±0.0" 1,0±0,Г <0.0001
Частота СД 2, % 4,8 31,6*" 28,7*" "" -
Глюкоза, ммоль/л 5,2 ±0,6 6,4 ± 1,9" 6,0 ± 1,7' <0,01
Инсулин, мкЕД/мл 8,8 ±5,7 12,4 ±7,3' 10,4 ±6,7 <0,05
Индекс НОМА 2,1 ±1,5 3,5 ± 2ДГ 2,8 ± 2,0" <0,01
НЭЖК, ммоль/л 0,3 ± 0,2 0,4 ± 0,2 0,4 ± 0,2 Н.д.
ТГ, ммоль/л 2,3 ± 1,6 2,8 ± 1,5 3fi±2,f <0,05
ОХС, ммоль/л 6,3 ± 1,6 6,7 ± 1,9 6,7 ± 1,7 Н.д.
ХС ЛНП, ммоль/л 4,1 ± 1,6 4,4 ±2,1 4,3 ± 1,5 Н.д.
ХС ЛВП, ммоль/л 1,1 ±0,2 1,0± 0,1" 1.0 ±0,2" <0,01
КА 5,0 ± 1,9 5,9 ± 2,2 5,8 ± 2,2' <0,01
Адипонектин, мкг/мл 6,0 ± 3,7 5,5 ± 3,0 6,4 ±3,7 Н.д.
Лептин, иг/мл 13,7 ± 13,0 25,6 ±29,0 18,6 ± 18.0 Н.д.
Примечание: Отличия достоверны по сравнению с первой группой при: - р < 0,05, - р < 0,01, - р < 0,001. Остальные обозначения - как в предыдущих таблицах.
Снижение толерантности к физической нагрузке было ассоциировано с более высоким отношением ОТ/ОБ, более выраженной ИР (повышение индекса НОМА, а также концентраций глюкозы и инсулина) и увеличением частоты СД 2 типа (табл. 6). Помимо этого, обращает внимание более низкий уровень ХС ЛВП у пациентов со сниженной толерантностью к физической нагрузке.
Корреляционный анализ выявил, что после выравнивания по полу, возрасту и ОТ, параметры толерантности к физической нагрузке (время работы, мощность, ОВР, ДП), а также показатели функционального резерва миокарда,
особенно ХроноР, были обратно взаимосвязаны с показателями инсулинорези-стентности и положительно с содержанием в крови ХС ЛВП и ДАД (табл. 7).
Таблица 7.
Частные корреляции параметров велоэргометрической пробы с клинико-метаболическими показателями после выравнивания по полу, возрасту и ок-руж_ностаталии.______________
Параметры Время Работы Мощность ОВР ДП ХроноР ИноР
Частота СД 2, % -0,19' -0,18* -0,16 0,01 -0,14 0,04
Глюкоза, ммоль/л -0,18' -0,16 -0,16 0 -0,11 -0,03
Инсулин, мкЕД/мл _] -0,16* -0,11 -0,14 -0,02 -0,24^ 0,02
Индекс НОМА -0,21* -0,16 -0.18" -0,02 -0,26' 0,01
НЭЖК, ммоль/л -0,09 -0,07 -0,05 0,05 -0,16 0,04
ТГ, ммоль/л -0,05 -0,03 -0,05 0,02 -0,08 -0,01
ОХС, ммоль/л ХСГЛНП, ммоль/л -0,12 -0,11 -0,09 -0,15 -0,09 -0,11
-0,06 -0,03 -0,04 Г-0,17*" -0,06 -0,1
ХС ЛВП, ммоль/л 0,17' 0,15 0,17' 0,24' 0,38' 0,19'
КА -0,19' -0,17' -0,17' -0,22' -0,1 Г
Адипонектин, мкг/мл 0,14 0,09 0,11 -0,07 -0,01 -0,05
Лептин, нг/мл -0,05 1 -0,07 -0,06 -0,05 -0,04 ~1 -0,13
САД, мм рг. ст. 0,02 0,05 0,02 0,16 -0,09 -0,08
ДАД, мм рт. ст. 0,17' Го,2 Г 0,16 0,26' 0,06 0,02
1 ------1 -----'--г------
Примечание: - р < 0,05.
В ходе регрессионного анализа, после подстановки в модель в качестве независимых детерминант таких параметров, как пол, возраст, ОТ, концентрации адипонектина, лептина, НЭЖК, ТГ, ХС ЛВП, индекса НОМА, выяснилось, что ХроноР определяется влиянием возраста (Р=-0,24;р<0,01), концентрации ХС ЛВП (Р=0,.36;р<0,0001) и индекса НОМА (Р=-0,21;р<0,05). При этом на ИноР и ДП оказывала влияние только концентрация ХС ЛВП (Р=0,24; р=0,01 и Р=0,3; р<0,01, соответственно). Время работы определялось влиянием пола (Р=0,48;р<0,0001), возраста (Р=-0,36;р<0,0001) и индекса НОМА (Р=-0,16;р<0,05).
Таким образом, важным фактором, который способствует снижению толерантности к физической нагрузке и ХроноР, является развитие ИР. Кроме того, снижение функционального резерва миокарда при ИБС может быть связано с понижением в крови концентрации антиатерогенных ЛВП.
Результаты факторного анализа подтверждаются и при анализе структурно-функциональных характеристик миокарда у пациентов с различной выраженностью инсулинорезистентности (табл. 8) и различным уровнем ХС ЛВП (табл. 9).
Таблица 8.
Результаты велоэргометрии и ультразвукового исследования сердца у пациентов с различным индексом НОМА.
Параметры Тертилн Р
1 (п = 52) И (п = 53) III (п = 53)
Индекс НОМА 1,1 ±0,2 (0,6- 1,5) 2,1 ±0,4 (1,5-3,0) 5,09 ± 1,85 (3,00-12,93) —
М/Ж 23/29 18/35 27/26 1-
Возраст, годы 59,3 ± 11,0 57,6 ±8,2 55,8 ±8,1 . Н.д.
Время работы, мин. 8,3 ± 2,9 8,0 ± 3,3 7,5 ± 3,2 Н.д.
Мощность, Вт. 91,2 ±31,7 90,6 ±33,3 86,5 ±31,8 Н.д.
ОВР, Втхмин. 493,2 ± 266,9 490,8 ±335,3 437,7 ± 298.9 ПГд.
ДП, ед. 259,8 ±53,0 260,3 ± 45,7 266,7 ±51,4 Н.д.
ХроноР, уд./мин. 68,7 ± 17,4 62,7 ± 16,5 57,0 ± 16,3" <0,005
ИноР, мм рт. ст. 60,7 ± 23,4 64,0 ± 25,2 70,2 ±24,8 '"Н.д.
ММЛЖ, г 213,73 ±56,0 220,5 ± 62,3 245,0 ± 84,1к <0,05
ОТС 0,47 ±0,10 0,47 ±0,10 0,52 ±0,14' <0,05
ФВ, % 65,1 ±7,7 67,6 ± 7,6 63,7 ± 7,9* <0,05
ФУ, % 38,2 ±5,4 38,3 ± 6,5 35,2 ± М"1* <0,05
Примечание: Отличия достоверны по сравнению с 1-й группой при: - р < 0,05, - р < 0,01, по сравнению со 2-й группой при * - р < 0,05. Остальные обозначения - как в предыдущих таблицах.
Оказалось, что у пациентов с выраженной ИР (III тертиль значений индекса НОМА) наблюдается снижение систолической функции и ХроноР на фоне гипертрофии и ремоделирования миокарда. Принимая во внимание результаты регрессионного анализа, согласно которому индекс НОМА влиял на ОТС, но не на ММЛЖ, можно заключить, что ИР способствует в первую очередь развитию концентрического ремоделирования ЛЖ. Вероятно, что в основе выявленной взаимосвязи ИР с ремоделированием миокарда ЛЖ лежит трофическое действие инсулина, уровень которого в крови при ИР повышается. Известно, что инсулин является стимулятором синтеза белка и ингибитором его катаболизма в кардиомиоцитах [Ashford, Pain, 1986]. Тем самым гиперинсулинемия способствует гипертрофии этих клеток.
Несмотря на то, что в целом у всех обследованных пациентов содержание ХС ЛВЛ в крови было низким и вариации этого показатели в группах были небольшими. Оказалось, что снижение концентрации ХС ЛВП ниже уровня 1 ммоль/л сопровождалось снижением функционального резерва миокарда (табл. 9). Хотя значения других структурных и функциональных параметров работы миокарда при этом достоверно не изменялись.
Таблица 9.
Результаты велоэргометрии и ультразвукового исследования сердца у па-
циентов с различным у эовнем ХС ЛВП.
Параметры ХС ЛВП <1,0 ммоль/л (п = 61) ХС ЛВП> 1,1 ммоль/л (п = 29)
ХС ЛВП, ммоль/л 0,9 ±0,1 1,3 ± 0,2"
М/Ж 24/37 14/15
Возраст, годы 56,9 ±8,3 58,9 ± 12,1
Время работы, мин. 7,6 ±2,8 8,6 ±3,4
Мощность, Вт. 88,0 ±28,9 94,1 ±38,2
ОВР, Втхмин. 444,6 ± 268,0 520,4 ±310,5
ДП, ед. 263,7 ± 44,2 283,5 ±41Д*
ХроноР, уд./мин. 58,8 ± 16,6 77,8 ± 15,5"
ИноР, мм рт. ст. 64,7 ± 24,3 68,9 ±21,9
ММЛЖ, г 239,2 ± 70,4 220,6 ± 74,6
отс 0,5 ±0,1 0,5 ± 0,1
ФВ, % 66,2 ± 8,6 65,3 ± 7,5
ФУ, % 36,9 ± 6,6 38,9 ± 7,0
- при р < 0,0001. Остальные обозна-
чения - как в предыдущих таолицах.
Таким образом, важным фактором, определяющим снижение толерантности к физической нагрузке и функционального резерва миокарда у пациентов с МС и ИБС, является инсулинорезистентность. Уменьшению функционального резерва миокарда также способствует гипоальфахолестеринемия.
Поэтому следующая часть настоящего исследования была посвящена изучению выяснения факторов, которые способствуют формированию инсули-норезистентности и нарушению обмена липидов при МС.
Влияние адипокинов на формирование инсулинорезистентности и нарушение лииидного обмена
Было установлено, что пациенты со сниженной чувствительностью тканей к инсулину (II и III тертили индекса НОМА) обладают более высоким ИМТ и более выраженным распределением жировой ткани в пользу абдоминального фенотипа. У этих пациентов наблюдается также более высокое содержание ТГ и ОХС и более низкое - ХС ЛВП (табл. 10). И, наконец, снижение чувствительности тканей к инсулину сопровождается увеличением содержания в крови НЭЖК и лептина и снижением - адипонектина. Эти различия подтверждались и корреляционным анализом, который выявил независимые от пола и возраста положительные корреляции индекса НОМА с ОТ, отношением ОТ/ОБ, концентрациями лептина, НЭЖК, ОХС и отрицательные с содержанием адипонектина и ХС ЛВП.
Таблица 10.
Клииико-метаболические параметры у пациентов с различным значением индекса НОМА_ _____
Показатели Тертили Р
1(п=51) г И(п=52) г П1 (п=52)
Индекс НОМА 1,10 ±0,23 2,07 ±0,41 5,09 ± 1,85 <0,0001
(0,59- 1,45) (1,54-2,98) (3,00-12,93)
М/Ж 22/29 19/33 25/27 -
Возраст, годы 59,55 ± 10,86 57,25 ±8,12 55,63 ± 8,26 Н.д.
ИМТ, кг/м^ 26,00 ±4,01 29,83±4,27"' 31,28 ±5,10*" <0,0001
ОТ, см 88,18±13,76 98,13±11,51'" 103,92*11,91*" <0,0001
ОТ/ОБ 0,92 ±0,11 0,97 * 0,09" 1,00 ±0,07*" <0,0001
Лептин, нг/мл 9,90 ±8,97 20,40*18,36'" 22,03±21,74"' <0,0001
Адипонектин, мкг/мл 7,57 ± 4,02 6,24 ±3,89 4,81 ± 2,3 Г" < 0,001
Частота СД 2, % 3,92 23,08"' 40,38"' -
Глюкоза, ммоль/л 5,06 ± 0,57 5,71 * 1,27' 6,85*2,18"""' <0,0001
Инсулин, мкЕД/мл 4,89 ± 1,03 8,38 * 2,17*" 17,57*8,41'""* <0,0001
НЭЖК, ммоль/л _| 0,27 ±0,11 0,35 ±0,14" 0,45 ± 0,22"'" <0,0001
ТГ, ммоль/л 1,85 ± 1,0 2,71 ± 1,68" 3,51*2,82'" <0,0001
ОХС, ммоль/л 6,13* 1,42 6,37 ± 1,39 7,01*1,84" <0,05
ХС ЛНП, ммоль/л 4,18 ± 1,48 4,13 ± 1,43 4,44* 1,78 Н.д.
ХС ЛВП, ммоль/л 1,11 ±0,19 1,01 ±0,14" 0,98*0,12"' <0,0001
КА 4,88 ± 1,74 5,40 ± 1,63 6,21 ±2,21"' <0,001
Примечание: Отличия достоверны по сравнению с первой группой при: - р < 0,05, " - р < 0,01, * - р < 0,001 и по сравнению со второй группой при: * - р < 0,05.,м - р < 0,001. Остальные обозначения - как в предыдущих таблицах.
Для более детальной оценки взаимного влияния изученных параметров углеводного и липидного обменов был проведен регрессионный анализ.
Выяснилось (табл. 11), что концентрации в крови адипонектина и лептина являются независимыми детерминантами индекса НОМА и содержания в крови инсулина. При проведении данного анализа в группах, разделенных по полу, оказалось, что концентрация адипонектина у мужчин оказывала влияние только на содержание в крови НЭЖК, в то время как концентрация лептина не являлась независимой детерминантой ни одного из изучаемых параметров. У женщин концентрации в крови адипонектина и лептина являлись независимыми детерминантами индекса НОМА и уровня инсулина. Другим фактором, определяющим значения данных параметров, был уровень в крови НЭЖК. Концентрация адипонектина у женщин оказывала влияние также на содержание в крови глюкозы. Представленные результаты указывают на то, что первичными мишенями действия адипонектина являются метаболизм НЭЖК у мужчин и ИР у женщин.
Таблица 11.
Множественный регрессионный анализ влияния содержания адипокинов на некоторые параметры углеводного и липидного обмена
Группа Независимые Зависимые переменные
пациентов переменные Индекс Инсу- Глюко- НЭЖК ТГ ХС
НОМА лин за ЛВП
Вся Пол 0,3 Г 0,32" 0,12 -0,31" 0,01 -0,03
выборка Возраст -0,01 -0,02 0,03 -0,09 -0,02 0,07
'S4 н Ul (-л ИМТ 0,03 -0,05 0,24' 0,18* 0,39"' -0,12
Инсулин - - -0,05 0,26" -0,00 -0,11
Глюкоза _ -0,05 - 0,32"* 0,24** -0,15
НЭЖК 0,34"' 0,28™ 6,34"' - "0Л9* -0,22'
Адипонектин -0,22" -0,2* -0Д6 -0,08 -0,12 0,02
Лептин 0,42" '0,47'" [о -0,16 -0,10 -0,09
I? 0,41я"" Г 0,29^ 0,29ffW~' 0,34е 0,45""' 0,25""
Мужчины Возраст -0,11 -0,14 0,02 -0,15 -0,06 0,15
(11=66) ИМТ 0,22 41 0,42' 0,18 0,36' -0,07
Инсулин _ - -0,06 0,19 0,01_ -0,15
Глюкоза _ -0,06 HL 0,27' 0,25* -0,28*
НЭЖК 0,34" 0,25* о,зГ" - 0,25^ -0,10
Адипонектин 0,06 "0,08 -0,06 -0,23' -0,09 0,05
Лептин 0,18 0,2 -0,23 -0,03 -0,09 -0,15
Я* 0,37™ Ткз*® Ö4T 0,51"" 0,37"
Женщины Возраст 0,04 0,03 0,04 0,01 0,04 -0,02
(п = 89) ИМТ -0,09 -0,14 0,14 0,22 0,46 -0,15
Инсулин - - -0,07 0,3 5^*" -0,00 -0,06
Глюкоза - -0,06 - 0,34** 0,22*" 0.02
НЭЖК 0,3 5"' 0,31" Го,33*" - Г0,07 -0,2 7*
Адипонектин -0,37*"" -0,35" -0,23" 0,06 -0,15 0,05
Лептин 0,42"*~ 0,43"' 0,18 -0,24 -0,09 -0,08
0,49""" 0,38м" 0,32"" 0,3м" 0,40® 0,18"
Примечание: значения регрессионных коэффициентов р достоверны при - р < 0,05, - р < 0,001, *" - р < 0,0001. Значение коэффициента детерминации (Я ) достоверно при * - р < 0,05, ** - р < 0,001,ш - р < 0,0001.
Из регрессионного анализа также следует, что на концентрации в крови ТГ и ХС ЛВП адипокины прямого воздействия не оказывают. При этом данные параметры липидного обмена определяются влиянием НЭЖК и глюкозы (табл. 11). Поскольку между концентрациями в крови глюкозы и НЭЖК также имеется тесная взаимосвязь, то адипонектин, воздействуя на уровень НЭЖК у мужчин и концентрацию глюкозы у женщин, может влиять как на метаболизм ТГ, так и на уровень ХС ЛВП. Отсутствие независимой взаимосвязи между концентрацией адипонектина и содержанием ТГ и ХС ЛВП в обследованной группе можно объяснить тем, что уровень этих липидов в значительной степени определяется другими факторами (повышение уровня НЭЖК и глюкозы, ИР), которые, по-видимому, могут перекрывать эффекты адипонектина. Таким образом, согласно полученным результатам, роль снижения содержания адипонектина в
формировании дислипидемии заключается в повышении ИР, уровня глюкозы и НЭЖК, через которые, вероятно, реализуется развитие аДЛП.
Подводя итог, можно заключить, что роль адипокинов в формировании морфофункциональных нарушений миокарда при ИБС у пациентов с МС сводится к их воздействию на развитие инсулинорезистентности и атерогенной дислипидемии, в частности, гипоальфалипопротеинемии, которые, в свою очередь, оказывают влияние на миокард (рис.3).
I [адипонектина] | (лептииа)
- концентрическое рсмоделирование ЛЖ
- систолическая дисфункция ЛЖ
-^ толерантности к физической нагрузке -1 хронотропного резерва миокарда
| функционального резерва миокарда
Рис. 3. Участие адипонектина в формировании структурно-функциональных
нарушений миокарда при ИБС
Примечание: [ ] - концентрация вещества, | - увеличение, | - снижение.
ВЫВОДЫ
1. У пациентов с метаболическим синдромом ИБС протекает на фоне повышения массы миокарда левого желудочка, снижения его функционального резерва и ухудшения толерантности к физической нагрузке, проявляющейся в виде снижения времени и объема выполненной работы и повышения частоты ишемических реакций при велоэргометрической пробе.
2. Ведущими факторами, способствующими формированию гипертрофии и ремоделирования миокарда левого желудочка у пациентов с ИБС, являются такие компоненты метаболического синдрома, как повышение систолического артериального давления, инсулинорезистентность и ожирение. Систолическая функция левого желудочка обратно взаимосвязана со степенью инсулинорезистентности и абдоминального распределения жировой ткани.
3. Важным фактором, определяющим снижение толерантности к физической нагрузке и функционального резерва миокарда у пациентов с ИБС, является инсулинорезистентность. Уменьшению функционального резерва миокарда также способствует гипоальфахолестеринемия.
4. Концентрации в крови адипонектина, лептина и неэстерифицированных жирных кислот у женщин являются независимыми детерминантами индекса инсулинорезистентности НОМА; у мужчин при этом данный показатель оп-
! [НЭЖК1 -К чнеулнно-
резистентность
ределяется уровнем НЭЖК. В свою очередь, на концентрацию НЭЖК у них оказывает независимое влияние уровень адипонектина.
5. Концентрации в крови адипонектина и лептина не оказывают прямого воздействия на уровень в крови триглицеридов и холестерина липопротеинов высокой плотности. При этом адипонектин влияет на содержание указанных липидов, воздействуя на метаболизм НЭЖК и глюкозы.
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ
1. У пациентов с ИБС следует учитывать наличие метаболического синдрома в процессе лечения.
2. В целях оптимизации терапевтических мероприятий у пациентов с ИБС с сопутствующим метаболическим синдромом необходимо оценивать индекс инсулинорезистентности НОМА, уровень инсулина и глюкозы крови.
3. Для прогноза течения ИБС у пациентов с метаболическим синдромом использовать в практике определения уровня адипонектина, лептина.
4. Артериальную гипертензию, инсулинорезистентность, ожирение необходимо учитывать в прогнозировании течения ИБС у больных с метаболическим синдромом как факторы развития гипертрофии, ремоделирования миокарда, изменения систолической функции.
СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ
1. Танянский Д.А., Фирова Э.М., Шаталина Л.В., Денисенко А.Д. Роль адипо-кинов и неэстерифицированных жирных кислот в развитии инсулинорезистентности.//Проблемы эндокринологии. - 2009. - Т. 55.-№3.-С. 13- 17.
2. Танянский Д.А., Фирова Э.М., Шаталина Л.В., Денисенко А.Д. Адипонектин: снижение содержания при метаболическом синдроме и независимая связь с гипертриглицеридемией. // Кардиология. - 2008. - № 12. - С. 20 - 25.
3. Танянский Д.А., Фирова Э.М., Шаталина Л.В., Денисенко А.Д. Связь содержания адипонектина в крови мужчин с обменом углеводов и липидов. // Мед. Акад. Жури. - 2008. - Т. 8. - № 3. - С. 96 - 102.
4. Танянский Д.А., Фирова Э.М., Шаталина Л.В., Денисенко А.Д. Связь уровня адипонектина с обменом липидов и углеводов у женщин: роль массы тела. // Вестн. С.-Петерб. Ун-та. Сер. 11. - 2008. - № 4. - С. 53 - 61.
5. Фирова Э.М., Танянский Д.А., Шаталина Л.В., Денисенко А.Д. Связь показателей обмена липидов и углеводов с толерантностью к физической нагрузке у пациентов с ИБС. // Вестник СПбГМА им. И.И. Мечникова. - 2008. - № 1.-С.76-80.
6. Танянский Д.А., Фирова Э.М. Адипонектин: связь с метаболическими показателями и роль в обмене жирных кислот у мужчин. // Сборник тезисов 11-й Всероссийской медико-биологической конференции молодых исследователей «Человек и его здоровье», Санкт-Петербург, 2008. - С. 358 - 359.
7. Танянский Д.А., Фирова Э.М., Денисенко А.Д. Адипокины у больных с нарушениями углеводного обмена: содержание в крови и возможная роль в развитии сахарного диабета 2 типа, // Материалы IV Всероссийского Диабе-тологического Конгресса, Москва, 2008. - С. 73.
° !
8. Танянский Д.А., Фирова Э.М., Денисенко А.Д. Адипонектин и лептин: независимая роль в развитии инсулинорезистентности у женщин. // Тезисы V конференции молодых ученых России с международным участием «Фундаментальные науки и прогресс клинической медицины», Москва. - Вестник РАМН. -2008. - № 6 (прил.). - С. 426.
9. Фирова Э.М., Абышев Р.А., Танянский Д.А. Влияние инсулиннезависимого сахарног о диабета на тяжесть течения ишемической болезни сердца у пациентов с диагностированным метаболическим синдромом. // Сборник тезисов к научно-практической конференции «Актуальные вопросы клинической и экспериментальной медицины», МАПО, Санкт-Петербург, 2007. - С. 93 - 95.
10.Фирова Э.М., Танянский Д.А., Денисенко А.Д. Уровень адипонектина у пациентов с метаболическим синдромом. // Материалы научно-практической конференции «Современная кардиология: наука и практика». - Вестник СПбГМА им. И.И. Мечникова. - 2007. - № 2 (2). - С. 184 - 185.
11.Фирова Э.М., Танянский Д.А., Денисенко А.Д. Оценка метаболических показателей у пациентов с ИБС и метаболическим синдромом: связь с показателями велэргометрии. // Материалы 10-го Юбилейного научно-образовательного форума «Кардиология 2008», Москва, 2008. - С. 101 - 102.
Подписано в печать 16.02.10 Формат 60x84/16
Обьем i п.л. Тираж 100 экз. Заказ № 195
Типография ВМА, 194044, СПб., ул. Академика Лебедева, б.
Оглавление диссертации Фирова, Эльвира Михайловна :: 2010 :: Санкт-Петербург
ИСПОЛЬЗОВАННЫЕ СОКРАЩЕНИЯ.
1. ВВЕДЕНИЕ.
1.1. Актуальность.
1.2. Цель и задачи исследования.
1.3. Основные положения, выносимые на защиту.
1.4. Научная новизна работы.
1.5. Теоретическое и практическое значение работы.
1.6. Апробация работы.
1.7. Личный вклад.
2. ОБЗОР ЛИТЕРАТУРЫ.
2.1. Метаболический синдром: концепция и критерии диагностики
2.2. Патогенетические факторы, способствующие развитию метаболического синдрома.
2.2.1. Неэстерифицированные жирные кислоты.
Роль различных типов жировой ткани в повышении уровня НЭЖК.
Роль НЭЖК в развитии инсулинорезистентности.
Роль НЭЖК в развитии атерогенной дислипидемии.
2.2.2. Адипокины.
2.3. Влияние метаболического синдрома и его проявлений на течение ИБС.
2.3.1. Метаболический синдром и клиническое течение ИБС.
Роль неэстерифицированных жирных кислот.
Роль адипонектина.
Роль лептина.
2.3.2. Метаболический синдром и структурно-функциональные нарушения миокарда.
2.3.2.1. Артериальная гипертензия.
2.3.2.2. Ожирение.
2.3.2.3. Инсулинорезистентность и нарушение углеводного обмена.
Влияние гипергликемии.
Влияние гиперинсулинемии.
2.3.2.4. Дислипидемия.
2.3.2.5. Роль адипокинов.
Адипонектин.
Лептин.
3. МАТЕРИАЛЫ И МЕТОДЫ.
3.1. Пациенты.
3.2. Определение биохимических показателей в образцах плазмы пациентов.
3.3. Оценка функционального состояния сердечно-сосудистой системы и морфофункционалъного состояния миокарда.
3.4. Статистическая обработка результатов.
4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.
4.1. Толерантность к физической нагрузке и морфофункциональные параметры миокарда у пациентов с метаболическим синдромом.
4.2. Роль адипокинов и метаболических факторов в формировании морфофункциональных нарушений миокарда при ИБС.
4.3. Роль адипокинов и метаболических факторов в понижении функционального резерва миокарда и толерантности к физической нагрузке у пациентов с ИБС.
4.4. Адипокины: влияние на метаболические пути, ответственные за развитие нарушений структуры и функции миокарда при ИБС.
5. ВЫВОДЫ.
Введение диссертации по теме "Кардиология", Фирова, Эльвира Михайловна, автореферат
1.1. Актуальность
В последнее десятилетие значительно возрос интерес исследователей к проблеме метаболического синдрома (МС). Это обусловлено как широким распространением его в популяции, так и значительным увеличением риска развития сердечно-сосудистых заболеваний (ССЗ) и, прежде всего, ишемиче-ской болезни сердца (ИБС) у пациентов, страдающих МС. Вплоть до настоящего времени недостаточно изученным остается вопрос о влиянии МС и его проявлений на течение ИБС. В частности, не выяснено, в какой степени при МС усугубляются такие сопутствующие ИБС нарушения со стороны сердца, как снижение функционального резерва миокарда, гипертрофия и ремодели-рование левого желудочка (ЛЖ), систолическая и диастолическая дисфункция миокарда ЛЖ.
Механизмы развития метаболического синдрома остаются окончательно не выясненными. Согласно современным представлениям, одним из ведущих патогенетических факторов развития МС, а также структурно-функциональных нарушений миокарда и снижения толерантности к физической нагрузке, является ожирение и/или абдоминальный тип распределения жировой ткани. Предполагается, что патогенное влияние ожирения на формирование МС опосредуется за счет повышения секреции в кровь жировой тканью неэстерифицированных жирных кислот (НЭЖК) и изменения продукции жировой тканью биологически активных белков - адипокинов. Но если участие НЭЖК и адипокинов в патогенезе МС более или менее известно, то влияние данных факторов на клиническое течение ИБС остается менее изученным.
Оценка значения клинико-биохимических проявлений МС в течении ИБС, с учетом влияния НЭЖК и адипокинов, позволит приблизиться к пониманию механизмов ухудшения течения ИБС, выявить наиболее неблагоприятные прогностические факторы, осложняющие течение ИБС, что будет способствовать разработке новых методов диагностики, профилактики и лечения данного заболевания.
Заключение диссертационного исследования на тему "Течение ишемической болезни сердца при метаболическом синдроме"
5. ВЫВОДЫ
1. У пациентов с метаболическим синдромом ИБС протекает на фоне повышения массы миокарда левого желудочка, снижения его функционального резерва и ухудшения толерантности к физической нагрузке, проявляющейся в виде снижения времени и объема выполненной работы и повышения частоты ишемических реакций при велоэргометрической пробе.
2. Ведущими факторами, способствующими формированию гипертрофии и ремоделирования миокарда ЛЖ у пациентов с ИБС, являются артериальная гипертензия, инсулинорезистентность и ожирение. Систолическая функция ЛЖ обратно взаимосвязана со степенью инсулинорезистентности и абдоминального распределения жировой ткани. При этом в формировании указанных морфофункциональных нарушений миокарда прямой роли НЭЖК и адипокинов не выявлено.
3. Важным фактором, определяющим снижение толерантности к физической нагрузке и функционального резерва миокарда у пациентов с ИБС, является инсулинорезистентность. Уменьшению функционального резерва миокарда также способствует гипоальфахолестеринемия. НЭЖК и адипокины в снижении толераностности к физической нагрузке и функционального резерва миокарда прямого участия не принимают.
4. Концентрации в крови адипонектина, лептина и НЭЖК у женщин являются независимыми детерминантами индекса инсулинорезистентности НОМА; у мужчин при этом данный показатель определяется уровнем НЭЖК. В свою очередь, на концентрацию НЭЖК у них оказывает независимое влияние уровень адипонектина.
5. Концентрации в крови адипонектина и лептина не оказывают прямого воздействия на уровень в крови ТГ и ХС ЛВП. При этом адипонектин влияет на содержание указанных липидов, воздействуя на метаболизм НЭЖК и глюкозы.
6. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ
1. У пациентов с ИБС следует учитывать наличие метаболического синдрома в процессе лечения.
2. В целях оптимизации терапевтических мероприятий у пациентов с ИБС с сопутствующим метаболическим синдромом необходимо оценивать индекс инсулинорезистентности НОМА, уровень инсулина и глюкозы крови.
3. Для прогноза течения ИБС у пациентов с метаболическим синдромом использовать в практике определение уровня адипонектина, лептина.
4. Артериальную гипертензию, инсулинорезистентность, ожирение необходимо учитывать в прогнозировании течения ИБС у больных с метаболическим синдромом как факторы развития гипертрофии, ремодели-рования миокарда, изменения систолической функции.
Список использованной литературы по медицине, диссертация 2010 года, Фирова, Эльвира Михайловна
1. Алмазов В.А., Благосклонная Я.В., Шляхто Е.В., Красильникова Е.И. Роль абдоминального ожирения в патогенезе синдрома инсулинорезистентно-сти. // Тер. Архив. 1999. - № 10. - С. 18 - 22.
2. Гинзбург М.М., Крюков Н.Н. Ожирение. Влияние на развитие метаболического синдрома. Профилактика и лечение. М.: Медпрактика-М, 2002. - 128 с.
3. Демидова Т.Ю., Селиванова А.В., Аметов А.С. Роль жировой ткани в развитии метаболических нарушений у больных сахарным диабетом 2-го типа в сочетании с ожирением. // Тер. Архив. 2006. - № 11. - С. 64 - 69.
4. Ерохина Е.Н. Роль инсулинорезистентности в развитии макрососудистых осложнений сахарного диабета 2 типа и пути ее коррекции. // Автореф. дисс. . канд. мед. наук. М., 2007. - 25 с.
5. Климов А.Н. Причины и условия развития атеросклероза. // В кн. Превентивная кардиология. Под ред. Г.И.Косицкого. М.: Медицина, 1977. - С. 260-321.
6. Климов А.Н., Никульчева Н.Г. Обмен липидов и липопротеинов и его нарушения. СПб.: Питер Ком, 1999. - 505 с.
7. Кобалава Ж.Д., Котовская Ю.В., Сафарова А.Ф. и др. Непропорционально высокая масса миокарда левого желудочка у больных артериальной гипертонией: клинические ассоциации и особенности ремоделирования. // Кардиология. 2008. - № 11. - С. 19 - 28.
8. Кобалава Ж.Д., Котовская Ю.В., Чистяков Д.А. и др. Клинико-генетические детерминанты гипертрофии левого желудочка у больных эс-сенциальной гипертонией. // Кардиология. 2001. - № 7. - С. 39 - 44.
9. Конради А.О., Рудоманов О.Г., Захаров Д.В. и др. Варианты ремоделирования сердца при гипертонической болезни распространенность и детерминанты. // Тер. Архив. - 2005. - № 9. - С. 8 - 16.
10. Ю.Липовецкий Б.М. Эпидемиология атеросклероза и артериальной гипертен-зии. СПб.: Наука, 2004. - 191 с.
11. П.Липовецкий Б.М., Константинов В.О. Холестерин крови и сердце человека. СПб.: Наука, 1993. - 128 с.
12. Профилактика, диагностика и лечение артериальной гипертензии. Российские рекомендации (второй пересмотр). // Кардиоваскулярная терапия и профилактика. 2004 (Приложение) - 20 с.
13. И.Фролова Ю.В., Агеева Е.В., Виноградова Т.В. и др. Роль активности ли-попротеинлипазы, гиперинсулинемии и уровня неэстерифицированных жирных кислот в развитии дислипидемий. // Мед. Акад. Журн. 2005. - Т. 5.-№4.-С. 43-49.
14. Шестов Д.Б. Расчет холестерина липопротеидов низкой плотности в мил-лимолях. // Лабораторное дело. 1985. - № 6. - С. 381.
15. Эпидемиология и факторы риска ишемической болезни сердца. // Под ред. А. Н. Климова. Л.: Медицина, 1989. - 176 с.
16. Abbasi F., Chu J., Lamendola С. et al. Discrimination between obesity and insulin resistance in the relationship with adiponectin. // Diabetes. 2004. - Vol. 53.-P. 585 -590.
17. Agata J., Masuda A., Takada M. et al. High plasma immunoreactive leptin level in essential hypertension. // Am. J. Hypertens. 1997. - Vol. 10. - P. 1171 -1174.
18. Aijas В., Ammar K.A., Lopez-Jimenez F. et al. Abnormal cardiac structure and function in the metabolic syndrome: a population-based study. // Mayo Clin. Proc.- 2008. -Vol. 83. -P, 1350-1357.
19. Alberti K.G., Zimmet P., Shaw J., and IDF Epidemiology Task Force Consensus Group. The metabolic syndrome a new worldwide definition. // Lancet. -2005.-Vol. 366.-P. 1059-1062.
20. Alpert M.A. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. // Am. J. Med. Sci. 2001. - Vol. 321. - P. 225 - 236.
21. Anan F., Yonemochi H., Masaki T. et al. High-density lipoprotein cholesterol and insulin resistance are independent and additive markers of left ventricular hypertrophy in essential hypertension. // Hypertens. Res. 2007. - Vol. 30. — P. 125-131.
22. Area M., Montali A., Valiante S. et al. Usefulness of atherogenic dyslipidemia for predicting cardiovascular risk in patients with angiographically defined coronary artery disease. // Am. J. Cardiol. 2007. - Vol. 100. - P. 1511 - 1516.
23. Ardern C.I., Katzmarzyk P.Т., Janssen I., Ross R. Discrimination of health risk by combined body mass index and waist circumference. // Obes. Res. 2003. -Vol. 11.-P. 135-142.
24. Arner P. Resistin: yet another adipokine tells us that men are not mice. // Diabe-tologia. 2005. - Vol. 48. - P. 2203 - 2205.
25. Arner P. Editorial: Visfatin a true or false trail to type 2 diabetes mellitus. // J. Clin. Endocrinol. Metab. - 2006. - Vol. 91. - P. 28 - 30.
26. SO.Ashford A J., Pain V.M. Insulin stimulation of growth in diabetic rats. Synthesis and degradation of ribosomes and total tissue protein in skeletal muscle and heart. // J. Biol. Chem. 1986. - Vol. 261. - P. 4066 - 4070.
27. Bella J.N., Devereux R.B., Roman M.J. et al. Relations of left ventricular mass to fat-free and adipose body mass. The Strong Heart Study. // Circulation. -1998. Vol. 98. - P. 2538 - 2544.
28. Beltowski J. Leptin and atherosclerosis. // Atherosclerosis. 2006. - Vol. 189. -P. 47-60.
29. Berg A.H., Combs T.P., Du X. et al. The adipocyte-secreted protein АсгрЗО enhances hepatic insulin action. // Nat. Med. 2001. - Vol. 7. - P. 947 - 953.
30. Berndt J., Kloting N., Kralisch S. et al. Plasma visfatin concentrations and fat depot-specific inRNA expression in humans. // Diabetes. 2005. - Vol. 54. - P. 2911 -2916.
31. Bidasee K.R., Dincer U.D., Besch H.R. Ryanodine receptor dysfunction in hearts of streptozotocin-induced diabetic rats. // Mol. Pharmacol. 2001. - Vol. 60.-P. 1356-1364.
32. Bidasee K.R., Nallani K., Yu Y. et al. Chronic diabetes increases advanced gly-cation end products on cardiac ryanodine receptors/calcium-release channels. // Diabetes. 2003. - Vol. 52. - P. 1825 - 1836.
33. Bjomtorp P. Are regional metabolic differences of adipose tissue responcible for different risks of obesity? // Horm. Metab. Res. Suppl. 1998. - Vol. 19. -P. 23-25.
34. Boden G., Chen X., Ruiz J. et al. Mechanisms of fatty acid-induced inhibition of glucose uptake. // J. Clin. Invest. 1994. - Vol. 93. - P. 2438 - 2446.
35. Boden G., Lebed В., Schatz M. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. // Diabetes. 2001. - Vol. 50. - P. 1612 - 1617.
36. Bos M J., Koudstaal P.J., Hofman A. et al. Uric acid is a risk factor for myocardial infarction and stroke. The Rotterdam Study. // Stroke. 2006. - Vol. 37. -P. 1503- 1507.
37. Bouchard R.A., Bose D. Influence of experimental diabetes on sarcoplasmic reticulum function in rat ventricular muscle. // Am. J. Physiol. Heart Circ. Physiol. 1991. - Vol. 260. - P. H341 - H354.
38. Boudina S., Abel E.D. Diabetic cardiomyopathy revisited. // Circulation. -2007.-Vol. 115.-P. 3213-3223.
39. Brownlee M. The pathobiology of diabetic complications. A unifying mechanism. // Diabetes. 2005. - Vol. 54. - P. 1615 - 1625.
40. Brush J.E., Faxon D.P., Salmon S. et al. Abnormal endothelium-dependent coronary vasomotion in hypertensive patients. // J. Am. Coll. Cardiol. 1992. -Vol. 19.-P. 809-815.
41. Burchfiel C.M., Skelton T.N., Andrew M. E. et al. Metabolic syndrome and echocardiography left ventricular mass in blacks: the Atherosclerosis Risk in Communities (ARIC) Study. // Circulation. 2005. - Vol. 112. - P. 819 - 827.
42. Caballero A.E., Arora S., Saouaf R. et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. // Diabetes. 1999. -Vol. 48.-P. 1856- 1862.
43. Caminiti G., Volterrani M., Marazzi G. et al. Metabolic syndrome predicts lower functional recovery in female but not in male patients after an acute cardiac event. // Int. J. Cardiol. 2008, doi:10.1016/j.ijcard.2008.03.094.
44. Campfield L.A., Smith F.J., Guisez Y. et al. Recombinant mouse ob protein: evidence for a peripheral signal linking adiposity and central neural networks. // Science. 1995. - Vol. 269. - P. 546 - 549.
45. Candido R., Forbes J.M., Thomas M.C. et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. // Circ. Res. 2003. - Vol. 92. - P. 785 - 792.
46. Carey A.L., Steinberg G.R., Macaulay S.L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. // Diabetes. 2006. - Vol. 55.-P. 2688-2697.
47. Carlsson M., Wessman Y., Almgren P., Groop L. High levels of nonesterified fatty acids are associated with increased familiar risk of cardiovascular disease. // Arterioscler. Thromb. Vase, Biol. 2000. - Vol. 20. - P. 1588 - 1594.
48. Cavusoglu E., Ruwende C., Chopra C. et al. Adiponectin is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction in patients presenting with chest pain. // Eur. Heart J. 2006. - Vol. 27. - P. 2300 -2309.
49. Ceddia R.B., Koistinen H.A., Zierath J.R., Sweeney G. Analysis of paradoxical observations on the association between leptin and insulin resistance. // FASEB J. 2002. - Vol. 16. - P. 1163 - 1176.
50. Chae C.U., Pfeffer M.A., Glynn R.J. et al. Increased pulse pressure and risk of heart failure in the eldery. // JAMA. 1999. - Vol. 281. - P. 634 - 639.
51. Chan A.Y.M., Soltys C.-L.M., Young M.E. et al. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. // J. Biol. Chem. 2004. - Vol. 279. - P. 32771 - 32779.
52. Chan D.C., Watts G.F., Ng T.W.K. et al. Adiponectin and other adipocytokines as predictors of markers of triglyceride-rich lipoprotein metabolism. // Clin. Chem.-2005.-Vol. 51.-P. 578-585.
53. Chandran M., Phillips S.A., Ciaraldi Т., Henry R.R. Adiponectin: more just another fat cell hormone? // Diabetes Care. 2003. - Vol. 26. - P. 2442 - 2450.
54. Chen M.-P., Chung F.-M., Chang D.-M. et al. Elevated plasma level of vis-fatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes melli-tus. // J. Clin. Endocrinol. Metab. 2006. - Vol. 91. - P. 295 - 299.
55. Chinali M., Devereux R.B., Howard B.V. et al. Comparison of cardiac structure and function in American Indians with and without the metabolic syndrome (the Strong Heart Study). // Am. J. Cardiol. 2004. - Vol. 93. - P. 40 - 44.
56. Chobanian A., Bakris G., Black H. et al. Seventh report of the Joint National Committee of prevention, detection, evaluation and treatment of high blood pressure. // Hypertension. 2003. - Vol. 42. - P. 1206 - 1252.
57. Choy L., Rosen В., Spiegelman B.M. Adipsin and an endogenous pathway of complement from adipose cells. // J. Biol. Chem. 1992. - Vol. 267. - P. 12736-12741.
58. Cianflone K.M., Maslowska M.H., Sniderman A.D. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. // J. Clin. Invest. 1990. - Vol. 85. - P. 722 - 730.
59. Cianflone K., Roncari D.A., Maslowska M. et al. Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. // Biochemistry. 1994. - Vol. 33. - P. 9489 - 9495.
60. Cianflone K.M., Sniderman A.D., Walsh M.J. et al. Purification and characterization of acylation stimulating protein. // J. Biol. Chem. 1989. — Vol. 264. -P. 426-430.
61. Cianflone K.M., Yasruel Z., Rodriguez M.A. et al. Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. // J. Lipid Res. 1990. - Vol. 31. - P. 2045-2055.
62. Clark R.J., McDonough P.M., Swanson E. et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNacylation. // J. Biol. Chem. 2003. - Vol. 278. - P. 44230 -44237.
63. Clinical Guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The evidence report. NIH publication. - 1998. -N. 98-4083.-228 p.
64. Cnopp M., Havel P.J., Utzschneider K.M. et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. // Diabetologia. 2003. - Vol. 46. - P. 459 -469.
65. Colditz G.A., Willett W.C., Rotnitzky A., Manson J.E. Weight gain as a risk factor for clinical diabetes mellitus in women. // Ann. Intern. Med. — 1995. -Vol. 122. N. 7. - P. 421 - 426.
66. Cole C.R., Blackstone E.H., Pashkow F.J. et al. Heart-rate recovery immediately after exercise as a predictor of mortality. // N. Engl. J. Med. — 1999. — Vol. 341.-P. 1351 1357.
67. Combs T.P., Pajvani U.B., Berg A.H. et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adi-ponectin and improved insulin sensitivity. // Endocrinology. 2004. - Vol. 145. -P. 367-383.
68. Considine R.V., Sinha M.K., Heiman M.L. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. // N. Engl. J. Med. 1996. -Vol. 334.-P. 292-295.
69. Couillard C., Lamarche В., Mauriege P. et al. Leptinemia is not a risk factor for ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. // Diabetes Care. 1998. - Vol. 21. - P. 782 - 786.
70. Devereux R.B., Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. // Circulation. — 1977. Vol. 55.-P. 613-618.
71. Devereux R.B., Roman M.J., Paranicas M. et al. Impact of diabetes on cardiac structure and function: the Strong Heart Study. // Circulation. 2000. - Vol. 101.-P. 2271 -2276.
72. Devereux R.B., Savage D.D., Sachs D.D., Laragh J.H. Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension. // Am. J. Cardiol. 1983. - Vol. 51. - P. 171 - 176.
73. Dixon J.L., Furukawa S., Ginsberg H.N. Oleate stimulates of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. // J. Biol. Chem. 1991. - Vol. 266. - N. 8. - P. 5080-5086.
74. Dobbins R.L., Szczpaniak L.S., Zhang W., McGarry J.D. Chemical sympathectomy alters regulation of body weight during prolonged ICV leptin infusion. // Am. J. Physiol. Endocrinol. Metab. 2003. - Vol. 284. - P. E778 - E787.
75. Domanski M.J., Jablonski K.A., Rice M.M. et al. Obesity and cardiovascular events in patients with established coronary disease. // Eur. Heart J. 2006. — Vol. 27.-P. 1416- 1422.
76. Du X., Matsumura Т., Edelstein D. et al. Inhibition of GADPH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. // J. Clin. Invest. 2003. - Vol. 112. - P. 1049 -1057.
77. Du Bois D., Du Bois E.F. A formula to estimate the approximate surface area if heighd and weight be known. // Arch. Int. Med. 1916. - Vol. 17. - P. 863 -871.
78. Ellis B.A., Poynten A., Lowy AJ. et al. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. // Am. J. Physiol. Endocrinol. Metab. 2000. - Vol. 279. - P. E554 - 60.
79. Fang Z.Y., Sharman J., Prins J.B., Marwick Т.Н. Determinants of exercise capacity in patients with type 2 diabetes. // Diabetes Care. 2005. - Vol. 28. - P. 1643 - 1648.
80. Ferrara A.L., Vaccaro O., Cardoni O. et al. Is there a relationship between left ventricular mass and plasma glucose and lipids independent of body mass index? Results of the Gubbio Study. // Nutr. Metab. Cardiovasc. Dis. 2003. -Vol. 13.-P. 126- 132.
81. Flegal K.M., Carroll M.D., Ogden C.L. Prevalence and trends in obesity among US adults, 1999 2000. // JAMA. - 2002. - Vol. 288. - P. 2723 - 2727.
82. Folsom A.R., Kushi L.H., Anderson K.E. Associations of general and abdominal obesity with multiple health outcomes in older women. // Arch. Intern. Med. -2000.-Vol. 160.-P. 2117-2128.
83. Ford E.S., Giles W.H., Dietz W.H. Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey. // JAMA. 2002. - Vol. 287. - P. 356 - 359.
84. Fox E., Taylor H., Andrew M. et al. Body mass index and blood pressure influences on left ventricular mass and geometry in African Americans. The Atherosclerotic Risk in Communities (ARIC) Study. // Hypertension. 2004. - Vol. 44.-P. 55-60.
85. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of preparation ul-tracentrifuge. // Clin. Chem. 1972. - Vol. 18. - P. 499 - 509.
86. Frystyk J., Berne C., Berglund L. et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men. // J. Clin. Endocrinol. Metab. 2007. - Vol. 92. - P. 571 - 576.
87. Fukuhara A., Matsuda M., Nishizawa M. et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. // Science. 2005. - Vol. 307. -P. 426-430.
88. Furler S.M., Gan S.K., Poynten A.M. et al. Relationship of adiponectin with insulin sensitivity in humans, independent of lipid availability. // Obesity. -2006. Vol. 14. - N. 2. - P. 228 - 234.
89. Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy. // J. Am. Coll. Cardiol.//2006. Vol. 48.-P. 1548- 1551.
90. Galderisi M., Anderson K.M., Wilson P.W., Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framing-ham Heart Study). // Am. J. Cardiology. 1991. - Vol. 68. - P. 85 - 89.
91. Galvez A.S., Ulloa J.A., Chiong M. et al. Aldose reductase induced by hyperosmotic stress mediates cardiomyocytes apoptosis. Differential effects of sorbitol and mannitol. // J. Biol. Chem. 2003. - Vol. 278. - P. 38484 - 38494.
92. Ganau A., Devereux R.B., Roman M.J. et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. // J. Am. Coll. Cardiol.-1992.-Vol. 19.-P. 1550- 1558.
93. George J., Patal S., Wexler D. et al. Circulating adiponectin concentrations in patients with congestive heart failure. // Heart. 2006. - Vol. 92. - P. 1420 -1424.
94. Goldberg I.J. Diabetic dyslipidemia: causes and consequences. // J. Clin. Endocrinol. Metab. 2001. - Vol. 86. - N. 3. - P. 965 - 971.
95. Goodpaster B.H., Thaete F.L., Simoneau J.-A., Kelley D.E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. // Diabetes. 1997. - Vol. 46. - P. 1579 - 1585.
96. Griffin M.E., Marcucci M.J., Cline G.W. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase С 0 and alterations in the insulin signaling cascade. // Diabetes. 1999. - Vol. 48. - P. 1270 -1274.
97. Grossman E., Shemesh J., Shamiss A. et al. Left ventricular mass in diabetes-hypertension. // Arch. Intern. Med. 1992. - Vol. 152. - P. 1001 - 1004.
98. Guo Z.K., Hensrud D.D., Johnson С. M., Jensen M.D. Regional postprandial fatty acid metabolism in different obesity phenotypes. // Diabetes. 1999. -Vol. 48.-P. 1586-1592.
99. Gupta R.K., Wittenberg B.A. 19F nuclear magnetic resonance studies of free calcium in heart cells. // Biophys. J. 1993. - Vol. 65. - P. 2547 - 2558.
100. Haffner S.N., Valdez R.A., Hazuda H.P. et al. Prospective analysis of the insulin-resistance syndrome (syndrome X). // Diabetes. 1992. - Vol. 41. - P. 715-722.
101. Halaas J.L., Boozer С., Blair-West J. et al. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. // Proc. Natl. Acad. Sci. USA. 1997. - Vol. 94. - P. 8878 - 8883.
102. Hanley A.J.G., Karter A. J., Festa A. et al. Factor analysis of metabolic syndrome using directly measured insulin sensitivity. The Insulin Resistance Atherosclerosis Study. // Diabetes. 2002. - Vol. 51. - P. 2642 - 2647.
103. Hardie D.G. The AMP-activated protein kinase pathway new players upstream and downstream. // J. Cell Sci. - 2004. - Vol. 117. - P. 5479 - 5487.
104. Harshfield G.A., Grim C.E., Hwang C. et al. Genetic and environmental influences on echocardiographically determined left ventricular mass in black twins. // Am. J. Hypertens. 1990. - Vol. 3. - P. 538 - 543.
105. He J., Watkins S., Kelley D.E. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. // Diabetes. 2001. - Vol. 50. - P. 817 - 823.
106. Heilbronn L.K., Rood J., Janderova L. et al. Relationship between serum re-si stin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. // J. Clin. Endocrinol. Metab. 2004. - Vol. 89. - P. 41844 -41848.
107. Hellmer J., Marcus C., Sonnenfeld T. Arner P. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. // J. Clin. Endocrinol. Metab. 1992. - Vol. 75. - P. 15 - 20.
108. Herrmann K.L., McCulloch A.D., Omens J.H. Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy. // Am. J. Physiol. Heart Circ. Physiol. 2003. - Vol. 284. - P. H1277 - H1284.
109. Heymsfield S.B., Greenberg A.S., Fujioka K. et al. Recombinant leptin for weight loss in obese and lean adults. // JAMA. 1999. - Vol. 282. - N. 16. - P. 1568- 1575.
110. Hotamisligil G.S. The role of TNFa and TNF receptors in obesity and insulin resistance. // J. Int. Med. 1999. - Vol. 245. - P. 621 - 625.
111. Hotta K., Funahashi Т., Arita Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. // Arterioscler. Thromb. Vase. Biol. 2000. - Vol. 20. - P. 1595 - 1599.
112. Hukshom C.J., Saris W.H.M., Westerterp-Plantenga M.S. et al. Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. // J. Clin. Endocrinol. Metab. 2000. - Vol. 85. - P. 4003 -4009.
113. Ilercil A., Devereux R.B., Roman M.J. et al. Relationship of impaired glucose tolerance to left ventricular structure and function: The Strong Heart Study. // Am. Heart J. 2001. - Vol. 141. - P. 992 - 998.
114. Ilercil A., Devereux R.B., Roman M.J. et al. Associations of insulin levels with left ventricular structure and function in American Indians. The Strong Heart Study. //Diabetes. -2002. -Vol. 51.-P. 1543- 1547.
115. Isobe Т., Saitoh S., Takagi S. et al. Influence of gender, age and renal function on plasma adiponectin level: the Nanno and Sobetsu study. // Eur. J. Endocrinol. 2005. - Vol. 153. - P. 91 - 98.
116. Isomaa В., Almgren P., Tuomi T. et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. // Diabetes Care. 2001. - Vol. 24.-P. 683-689.
117. Jensen M.K., Chiuve S.E., Rimm E.B. et al. Obesity, behavioral lifestyle factors, and risk of acute coronary events. // Circulation. 2008. - Vol. 117.-P. 3062-3069.
118. Jouven X., Charles M.-A., Desnos M., Ducimetiere P. Circulating nonesteri-fied fatty acid level as a predictive risk factor for sudden death in the population.//Circulation.-2001.-Vol. 104.-P. 756-761.
119. Kadowaki Т., Yamauchi Т., Kubota N. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. // J. Clin. Invest.-2006.-Vol. 116.-N. 7.-P. 1784- 1792.
120. Kaplan N.M. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. // Arch. Intern. Med. 1989. - Vol. 149.-N. 7.-P. 1514- 1520.
121. Karlsson C., Lindell K., Ottosson M. et al. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. // J. Clin. Endocrinol. Metab. 1998. - Vol. 83. -N. 11. - P. 3925-3929.
122. Katzmarzyk P.Т., Church T.S., Janssen I. et al. Metabolic syndrome, obesity, and mortality. Impact of cardiorespiratory fitness. // Diabetes Care. 2005. -Vol. 28.-P. 391-397.
123. Kelley D.E., Williams K.V., Price J.C. et al. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. // J. Clin. Endocr. Metab. 2001. - Vol. 86. - P. 5412 - 5419.
124. Kelley D.E., Mokan M., Simoneau J.-A., Mandarinot LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. // J. Clin. Invest. 1993. - Vol. 92. - P. 91 - 98.
125. Kern P.A., Mandic A., Eckel R.H. Regulation of lipoprotein lipase by glucose in primary cultures of isolated human adipocytes. Relevance to hypertriglyceridemia of diabetes. // Diabetes. 1987. - Vol. 36. - N. 11. - P. 1238 -1245.
126. Kern W., Peters A., Born J. et al. Changes in blood pressure and plasma catecholamine levels during prolonged hyperinsulinemia. // Metabolism. 2005. -Vol. 54.-P. 391 -396.
127. Kim K.-H., Lee K., Moon Y.S., Sul H.S. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. // J. Biol. Chem. — 2001. Vol. 276. - P. 11252 - 11256.
128. Kingwell B.A. Large artery stiffness: implications for exercise capacity and cardiovascular risk. // Clin. Exp. Pharmacol. Physiol. — 2002. — Vol. 29. — P. 214-217.
129. Kistorp C., Faber J., Galatius S. et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. // Circulation. — 2005. — Vol. 112.-P. 1756-1762.
130. Kiviniemi Т.О., Snapir A., Saraste M. et al. Determinants of coronary flow velocity in healthy young men. // Am. J. Physiol. Heart Circ. Physiol. 2006. -Vol. 291. - P. H594 - H569.
131. Kizer J.R., Barzilay J.I., Kuller L.H., Gottdiener J.S. Adiponectin and risk of coronary heart disease in older men and women. // J. Clin. Endocrinol. Metab. -2008.-Vol. 93.-P. 3357-3364.
132. Knutson V.P. The release of lipoproten lipase from 3T3-L1 adipocytes is regulated by microvessel endothelial cells in an insulin-dependent manner. // Endocrinology. 2000. - Vol. 141. - N. 2. - P. 693 - 701.
133. Kolter Т., Uphues I., Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. // Am. J. Physiol. Endocrinol. Metab. 1997. - Vol. 273. - P. E59 - E67.
134. Koren M.J., Devereux R.B., Casale P.N. et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. // Ann. Intern. Med. 1991. - Vol. 114. - P. 345 - 352.
135. Kovar J., Fejfarova V., Pelikanova Т., Poledne R. Hyperglycemia down-regulates total lipoprotein lipase activity in humans. // Physiol. Res. — 2004. — Vol. 53.-P. 61-68.
136. Koya D., King G.L. Protein kinase С activation and the development of diabetic complications. // Diabetes. 1998. - Vol. 47. - P. 859 - 866.
137. Kozakova M., Muscelli E., Flyvbjerg A. et al. Adiponectin and left ventricular structure and function in healthy adults. // J. Clin. Endocrinol. Metab. -2008.-Vol. 93.-P. 2811 -2818.
138. Krown K.A., Page M.T., Nguyen C. et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. // J. Clin. Invest. 1996. - Vol. 98. — P. 2854-2865.
139. Krief S., Lonnqvist F., Raimbault S. et al. Tissue Distribution of B3-adrenergic Receptor mRNA in Man. // J. Clin. Invest. 1993. - Vol. 91. - P. 344-349.
140. Kuch В., von Scheidt W., Peter W. et al. Sex-specific determinants of left ventricular mass in pre-diabetic and type 2 diabetic subjects. The Ausburg Diabetes Family Study. // Diabetes Care. 2007. - Vol. 30. - P. 946 - 952.
141. Kumaran K., Fall C.H., Martyn C.N. et al. Left ventricular mass and arterial compliance: relation to coronary heart disease and its risk factors in South Indian adults. // Int. J. Cardiol. 2002. - Vol. 83. - P. 1 - 9.
142. Lagadic-Gossmann D., Buckler К J., Le Prigent K., Feuvray D. Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. // Am. J. Physiol. Heart Circ. Physiol. 1996. - Vol. 270. - P. H1529 - H1537.
143. Lagrost L., Florentin E., Guyard-Dangremont V. et al. Evidence for non-esterified fatty acids as modulators of neutral lipid transfers in normolipidemic human plasma. // Arterioscler. Thromb. Vase. Biol. 1995. - Vol. 15. - P. 1388-1396.
144. Lakka H.-M., Lakka T.A., Tuomilehto J., Salonen J.T. Abdominal obesity is associated with increased risk of acute coronary events in men. // Eur. Heart J. — 2002. Vol. 23. - P. 706 - 713.
145. LaMonte M.J., Eisenman P.A., Adams T.D. et al. Cardiorespiratory fitness and coronary heart disease risk factors. The LDS Hospital Institute Cohort. // Circulation. 2000. - Vol. 102. - P. 1623 - 1628.
146. Laoutaris I.D., Vasiliadis I.K., Dritsas A. et al. High plasma adiponectin is related to low functional capacity in patients with chronic heart failure. // Int. J. Cardiol. 2009, doi: 10.1016/j.ijcard.2008.12.126.
147. Lau D.C.W., Dhillon В., Yan H. et al. Adipokines: molecular links between obesity and atheroslcerosis. // Am. J. Physiol. Heart Circ. Physiol. 2005. — Vol. 288. - P. H2031 - H2041.
148. Lauer M.S., Anderson K.M., Kannel W.B., Levy D. The impact of obesity on ventricular mass and geometry. The Framingham Heart Study. // JAMA. -1991. Vol. 266. - P. 231 - 236.
149. Laughlin G.A., Barrett-Connor E., May S., Langenberg C. Association of adiponectin with coronary heart disease and mortality. The Rancho Bernardo Study.//Am. J. Epidimiol.-2007.-Vol. 165.-P. 164- 174.
150. Lawlor D.A., Smith G.D., Ebrahim S. et al. Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. // J. Clin. Endocrinol. Metab. 2005. - Vol. 90. - P. 5677-5683.
151. Lawlor D.A., Smith G.D., Kelly A. et al. Leptin and coronary heart disease risk: prospective case control study in British women. // Obesity (Silver Spring).-2007.-Vol. 15.-P. 1694-1701.
152. Lee M., Gardin L.M., Lynch J.C. et al. Diabetes mellitus and echocardio-graphic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. // Am. Heart J. 1997. - Vol. 133. - P. 36 - 43.
153. Lefebvre A.-M., Laville M., Vega N. et al. Depot-specific differences in adipose tissue gene expression in lesn and obese subjects. // Diabetes. 1998. -Vol. 47.-P. 98- 103.
154. Lewis G.F., Carpentier A., Adeli K., Giacca A. Disordered fat storage and mobilization in the Pathogenesis of insulin resistance and type 2 diabetes. // Endocr. Rev. 2002. - Vol. 23. - P. 201 - 229.
155. Lewis G.F., Uffelman K.D., Szeto L.W. et al. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. // J. Clin. Invest. 1995. - Vol. 95. - P. 158 - 166.
156. Leyva F., Godsland I.F., Ghatei M. et al. Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk. // Arterioscler. Thromb. Vase. Biol. 1998. - Vol. 18. -P. 928 - 933.
157. Liao Y., Takashima S., Maeda N. et al. Exacerbation of heart failure in adi-ponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. // Cardiovasc. Res. 2005. - Vol. 67. - P. 705 - 713.
158. Lindsay R.S., Resnick H.E., Zhu J. et al. Adiponectin and coronary heart disease: The Strong Heart Study. // Arterioscler. Thromb. Vase. Biol. 2005. -Vol. 25.-P. el5 - el6.
159. Listenberger L.L., Han X., Lewis S.E. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. // Proc. Natl. Acad. Sci. USA. -2003. Vol. 100. - P. 3077 - 3082.
160. Liu G.X., Hanley P.J., Ray J., Daut J. Long-chain acyl-coenzime A esters and fatty acids directly link metabolism to Кдтр channels in the heart. // Circ. Res.-2001.-Vol. 88.-P. 918-924.
161. Lonnqvist F., Thorne A., Niseli K. A pathogenic role of visceral fat (33-adrenoreceptors in obesity. // J. Clin. Invest. 1995. - Vol. 95. - P. 1109 -1116.
162. Lundgren C.H., Brown S.L., Nordt Т.К. et al. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenic link between obesity and cardiovascular disease. // Circulation. 1996. - Vol. 93. - P. 106 -110.
163. Madhavan S., Ooi W.L., Cohen H., Alderman M.H. Relation of pulse pressure and blood pressure reduction to the incidence of myocardial infarction. // Hypertension. 1994. - Vol. 23. - P. 395 - 401.
164. Manco M., Mingrone G., Greco A.V. et al. Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. // Metabolism. 2000. - Vol. 49. - P. 220 - 224.
165. Manning B.D. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. // J. Cell Biol. 2004. - Vol. 167. - P. 399 - 403.
166. Mantzoros C.S. The role of leptin in human obesity and disease: a review of current evidence. // Ann. Intern. Med. 1999. - Vol. 130. - P. 671 - 680.
167. Marin P., Andersson В., Ottosson M. et al. The morphology and metabolism of intraabdominal adipose tissue in men. // Metabolism. 1992. - Vol. 41. - P. 1242-1248.
168. Marsh A.J., Fontes M.A.P., Killinger S. et al. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. // Hypertension. 2003. - Vol. 42. - P. 588 - 593.
169. Martin M.L., Jensen M.D. Effects of body fat distribution on regional lipoly-sis in obesity. // J. Clin. Invest. 1991. - Vol. 88. - P. 609 - 613.
170. Maslowska M., Sniderman A.D., Germinario R., Cianflone K. ASP stimulates glucose transport in cultured human adipocytes. // Int. J. Obes. Relat. Me-tab. Disord. 1997. - Vol. 21. - P. 261 - 266.
171. Matsubara M., Katayose S., Maruoka S. Decreased plasma adiponectin concentrations in nondiabetic women with elevated homeostasis model assessment ratios. // Eur. J. Endocrinol. 2003. - Vol. 148. - P. 343 - 350.
172. Matsui Т., Rosenberg A. Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. // J. Mol. Cell. Cardiol. -2005. Vol. 38. - P. 63 - 71.
173. Matsuura F., Oku H., Koseki M. et al. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. // Biochem. Biophys. Res. Commun. 2007. - Vol. 358. - P. 1091 - 1095.
174. Matsuzawa Y., Funahashi Т., Kihara S., Shimomura I. Adiponectin and metabolic syndrome. // Arterioscler. Thromb. Vase. Biol. 2004. - Vol. 24. - P. 29-33.
175. Matthews D.R., Hosker J.P., Rudenski A.S. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. // Diabetologia. 1985. - Vol. 28. - P. 412 -419.
176. Mauriege P., Marette A., Atgii C. et al. Regional variation in adipose tissue metabolism of severely obese premenopausal women. // J. lipid Res. 1995. -Vol. 36.-P. 672-84.
177. McTernan P.G., McTernan C.L., Chetty R. et al. Increased resistin gene and protein expression in human abdominal adipose tissue. // J. Clin. Endocrinol. Metab. 2002. - Vol. 87. - P. 2407 - 2410.
178. Megnien J.L., Simon A., Valensi P. et al. Comparative effects of diabetes mellitus and hypertension on physical properties of human large arteries. // J. Am. Coll. Cardiol. 1992. - Vol. 20. - P. 1562 - 1568.
179. Meigs J.B., D'Agostino R.B., Wilson P.W. et al. Risk variable clustering in the insulin resistance syndrome. The Framingham Offspring Study. // Diabetes.- 1997. Vol. 46. - P. 1594 - 1600.
180. Meigs J.B., Mittelman M.A., Nathan D.M. et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis. The Framingham Offspring Study. // JAMA. 2000. - Vol. 283. - N. 2. - P. 221 - 228.
181. Menon V., Li L., Wang X. et al. Adiponectin and mortality in patients with chronic kidney disease. // J. Am. Soc. Nephrol. 2006. - Vol. 17. - P. 2599 -2606.
182. Messerli F.H. Cardiovascular effects of obesity and hypertension. // Lancet.- 1982.-Vol. l.-P. 1165- 1168.
183. Mineo C., Deguchi H., Griffin J.H., Shaul P.W. Endothelial and antithrombotic actions of HDL. // Circ. Res. 2006. - Vol. 98. - P. 1352 - 1364.
184. Minokoshi Y., Kim E.B., Peroni O.D. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. // Nature. 2002. - Vol. 415.-P. 339-343.
185. Mitsuhashi H., Yatsuya H., Tamakoshi K. et al. Adiponectin level and left ventricular hypertrophy in Japanese men. // Hypertension. 2007. - Vol. 49. -P. 1448- 1454.
186. Mittelman S.D., Van Citters G.W., Kirkman E.L., Bergman R.N. Extreme Insulin Resistance of the Central Adipose Depot In Vivo. // Diabetes. 2002. -Vol. 51.-P. 755-761.
187. Mittendorfer В., Patterson B.W., Klein S. Effect of sex and obesity on basal VLDL-triacylglycerol kinetics. // Am. J. Clin. Nutr. 2003. - Vol. 77. - P. 573 -579.
188. Mizuno A., Murakami Т., Doi Т., Shima K. Effect of leptin on insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat. // Regul. Pept. 2001. -Vol. 99.-P. 41-44.
189. Modesti P. A., Vanni S., Bertolozzi I. et al. Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy. // Am. J. Physiol. Heart Circ. Physiol. 2000. - Vol. 279. - H976 - H985.
190. Montague C.T., Prins J.B., Sanders L. Depot-Related gene expression in human subcutaneous and omental adipocytes. // Diabetes. 1998. - Vol. 47. -P. 1384- 1391.
191. Mora S., Redberg R.F., Cui Y. et al. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women. A 20-year follow-up of the Lipid Research Clinics Prevalence Study. // JAMA. 2003. - Vol. 290.-P. 1600-1607.
192. Morisco C., Condorelli G., Trimarco V. et al. Akt mediates the cross-talk between P-adrenergic and insulin receptors in neonatal cardiomyocytes. // Circ. Res. 2005. - Vol. 96. - P. 180 - 188.
193. Mostaza J.M., Vega G.L., Snell P., Grundy S.M. Abnormal metabolism of free fatty acids in hypertriglyceridaemic men: apparent insulin resistance of adipose tissue. // J. Intern. Med. 1998. - Vol. 243. - P. 265 - 274.
194. Muller C., Assimacopoulos-Jeannet F., Mosimann F. et al. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. // Diabetologia. 1997. - Vol. 40. - P. 463 - 468.
195. Marcus R., Krause L., Weder A.B. et al. Sex-specific determinants of increased left ventricular mass in the Tecumseh Blood Pressure Study. // Circulation. 1994. - Vol. 90. - P. 928 - 936.
196. Mureddu G.F., de Simone G., Greco R. et al. Left ventricular filling in arterial hypertension: influence of obesity and hemodynamic and structural con-founders. // Hypertension. 1997. - Vol. 29. - P. 544 - 550.
197. Murray I., Sniderman A.D., Cianflone K. Enhanced triglyceride clearance with intraperitoneal human acilation stimulating protein in C57BL/6 mice. // Am. J. Physiol. Endocrinol. Metab. 1999. - Vol. 277. - P. E474 - E480.
198. Murray I., Sniderman A.D., Cianflone K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lackingacylation-stimulating protein. // Endocrinology. 2000. - Vol. 141. - P. 1041 — 1049.
199. Nair G.V., Chaput L.A., Vittinghoff E., Herrigton D.M. Pulse pressure and cardiovascular events in postmenopausal women with coronary heart disease. // Chest. 2005. - Vol. 127. - P. 1498 - 1506.
200. Nakayama Y., Tsumura K., Yamashita N. et al. Pulsatility of ascending aortic pressure waveform is a powerful predictor of restenosis after percutaneous transluminal coronary angioplasty. // Circulation. 2000. - Vol. 101. - P. 470 -472.
201. Netticadan Т., Temsah R.M., Kent A. et al. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. // Diabetes. 2001. - Vol. 50. - P. 2133 - 2138.
202. Neumeier M., Sigruener A., Eggenhofer E. et al. High molecular weight adiponectin reduces apolipoprotein В and E release in human hepatocytes. // Bio-chem. Biophys. Res. Commun. 2007. - Vol. 352. - P. 543 - 548.
203. Ng T.W.K., Watts G.F., Farvid M.S. et al. Adipocytokines and VLDL metabolism. Independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics? // Diabetes. 2005. -Vol. 54.-P. 795-802.
204. Nijmeijer R., Lagrand W.K., Baidoshvili A. et al. Secretory type II phos-pholipase A2 binds to ischemic myocardium during myocardial infarction in humans. // Cardiovasc. Res. 2002. - Vol. 53. - P. 138 - 146.
205. Nishikawa Т., Edelstein D., Du X.L. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. // Nature. 2000. - Vol. 404. - P. 787 - 790.
206. Nishizawa H., Shimomura I., Kishida K. et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. // Diabetes. -2002.-Vol. 51.-P. 2734-2741.
207. Nofer J.-R., Kehrel В., Fobker M. et al. HDL and arteriosclerosis: beyond reverse cholesterol transport. // Atherosclerosis. 2002. - Vol. 161. - P. 1-16.
208. Oliver M.F. Sudden cardiac death: the lost fatty acid hypothesis. // Q. J. Med. 2006. - Vol. 99. - P. 701 - 709.
209. Ouchi N., Ohishi M., Kihara S. et al. Association of hypoadiponectinemia with impaired vasoreactivity. // Hypertension. — 2003. Vol. 42. - P. 231 — 234.
210. Pagano C., Pilon C., Olivieri M. et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. // J. Clin. Endocrinol. Metab. 2006. - Vol. 91. - P. 3165 - 3170.
211. Paolisso G., Tagliamonte M.R., Galderisi M. et al. Plasma leptin level is associated with myocardial wall thickness in hypertensive insulin-resistant men. // Hypertension. 1999. - Vol. 34. - P. 1047 - 1052.
212. Paolisso G., Tataranni P.A., Foley J.E. et al. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. // Diabetologia. 1995. - Vol. 38. - P. 1213 - 1217.
213. Parhofer K.G., Barrett P.H.R. What we have learned about VLDL and LDL metabolism from human kinetics studies. // J. Lipid Res. 2006. - Vol. 47. - P. 16вцс20- 1630.
214. Patsch W., Tamai Т., Schonfeld G. Effect of fatty acids on lipid and apoprotein secretion and association in hepatocyte cultures. // J. Clin. Invest. 1983. -Vol. 72.-P. 371 -378.
215. Pavlopoulos H., Grapsa J., Stefanadi E. et al. Is it only diastolic dysfunction? Segmental relaxation patterns and longitudinal systolic deformation in systemic hypertension. // Eur. J. Echocardiogr. 2008. - Vol. 9. - P. 741 - 747.
216. Peterson P.N., Magid D.J., Ross C. et al. Association of exercise capacity on treadmill with future cardiac events in patients referred for exercise testing. // Arch. Intern. Med. 2008. - Vol. 168. - P. 174 - 179.
217. Phillips R.A., Krakoff L.R., Dunaif A. et al. Relation among left ventricular mass, insulin resistance, and blood pressure in nonobese subjects. // J. Clin. Endocrinol. Metab. 1998. - Vol. 83. - P. 4284 - 4288.
218. Pilz S., Mangge H., Wellnitz B. et al. Adiponectin and mortality in patients undergoing coronary angiography. // J. Clin. Endocrinol. Metab. 2006a. -Vol. 91.-P. 4277-4286.
219. Pilz S., Scharnagl H., Tiran B. et al. Elevated fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. // J. Clin. Endocrinol. Metab. 2006b. - Vol. 91. - P. 2542 -2547.
220. Pilz S., Scharnagl H., Tiran B. et al. Elevated plasma free fatty acids predict sudden cardiac death: a 6.85-year follow-up of 3315 patients after coronary angiography. // Eur. Heart J. 2007. - Vol. 28. - P. 2763 - 2769.
221. Pirro M., Mauriege P., Tchernof A. et al. Plasma free fatty acid levels and the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. // Atherosclerosis. 2002. - Vol. 160. - P. 377 - 384.
222. Pischon Т., Girman C.J., Hotamisligil G.S. et al. Plasma adiponectin levels and risk of myocardial infarction in men. // JAMA. 2004. - Vol. 291. - P. 1730-1737.
223. Poornima I.G., Parikli P., Shannon R.P. Diabetic cardiomyopathy. The search for a unifying hypothesis. // Circ. Res. 2006. - Vol. 98. - P. 596 - 605.
224. Rajapurohitam V., Gan X.T., Kirshenbaum L.A., Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. // Circ. Res. 2003. - Vol. 93. - P. 277 - 279.
225. Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. // Lancet. 1963. - Vol. 1. - P. 785 - 789.
226. Reaven G.M. Role of insulin resistance in human disease. // Diabetes. -1988. Vol. 37. - P. 1595 - 1607.
227. Ren J., Gintant G.A., Miller R.E., Davidoff A.J. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner. // Am. J. Physiol. Heart Circ. Physiol. 1997. - Vol. 273. - P. 2876 - 2883.
228. Ribisl P.M., Lang W., Jaramillo S.A. Exercise capacity and cardiovascular/metabolic characteristics of overweight and obese individuals with type 2 diabetes. The look AHEAD clinical trial. // Diabetes Care. 2007. - Vol. 30. -P. 2679-2684.
229. Ridker P.M., Buring J.E., Cook N.R., Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events. An 8-year follow-up of 14 719 initially healthy American women. // Circulation. 2003. - Vol. 107. -P. 391 -397.
230. Roden M., Price T.B., Perseghin G. et al. Mechanism of free fatty acid-induced insulin resistance in humans. // J. Clin. Invest. — 1996. Vol. 97. - P. 2859-2865.
231. Roden M., Stingl H., Chandramouli V. et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. // Diabetes. 2000. - Vol. 49. - P. 701 - 707.
232. Roubenoff R. Sarcopenia: effects on body composition and function. // J. Gerontol. A Biol. Sci Med. Sci. 2003. - Vol. 58. - P. 1012 - 1017.
233. Roubenoff R, Parise H., Payette H.A. et al. Cytokines, insulin-like growth-factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. // Am. J. Med. 2003. - Vol. 115. - P. 429-435.
234. Ruige J.B., Dekker J.M., Blum W.F. et al. Leptin and variables of body adiposity, energy balance, and insulin resistance in a population-based study. // Diabetes Care. 1999. - Vol. 22. - P. 1097 - 1104.
235. Rutter M.K., Parise H., Benjamin E.J. et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. // Circulation. 2003. - Vol. 107. - P. 448 -454.
236. Saad M.F., Damani S., Gingerich R.L. et al. Sexual dimorphism in plasma leptin concentration. // J. Clin. Endocrinol. Metab. 1997. - Vol. 82. - P. 579 -584.
237. Sanches-Barriga J.J., Rangel A., Castaneda R. et al. Left ventricular diastolic dysfunction secondary to hyperglycemia in patients with type II diabetes. // Arch. Med. Res. 2001. - Vol. 32. - P. 44 - 47.
238. Santomauro A., Boden G., Silva M. et al. Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. // Diabetes. 1999. - Vol. 48. - P. 1836 -1841.
239. Sasson Z., Rasooly Y., Bhesania Т., Rassoly I. Insulin resistance is an important determinant of left ventricular mass in the obese. // Circulation. 1993. -V. 88.-P. 1431 - 1436.
240. Sattar N., Wannamethee G., Sarwar N. et al. Adiponectin and coronary heart disease. A prospective study and meta-analysis. // Circulation. 2006. - Vol. 114.-P. 623 -629.
241. Savage D.B., Sewter C.P., Klenk E.S. et al. Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-y action in humans. // Diabetes. 2001. - Vol. 50. - P. 2199 - 2202.
242. Scherrer U., Sartori C. Defective nitric oxide synthesis: a link between metabolic insulin resistance, sympathetic overactivity and cardiovascular morbidity. //Eur. J. Endocrinol. -2000. Vol. 142. - P. 315 - 323.
243. Schnabel R., Messow C.M., Lubos E. et al. Association of adiponectin with adverse outcome in coronary artery disease patients: results from the Athero-Gene study. // Eur. Heart J. 2008. - Vol. 29. - P. 649 - 657.
244. Schulze M.B., Shai I., Rimm E.B. et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes. // Diabetes. 2005. — Vol. 54.-P. 534-539.
245. Schunkert H., Sadoshima J., Cornelius T. et al. Angiotensin-II-induced grouth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II. // Circ. Res. 1995. -Vol. 76. - P. 489 - 497.
246. Semenkovich C.F., Wims M., Noe L. et al. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated as posttranscriptional and post-translational levels. // J. Biol. Chem. 1989. - Vol. 264. - N. 15. - P. 9030 -9038.
247. Sengstock D.M., Vaitkevicius P.V., Supiano M.A. Arterial stiffness is related to insulin resistance in nondiabetic hypertensive older adults. // J. Clin. Endocrinol. Metab. 2005. - Vol. 90. - P. 2823 - 2827.
248. Shek E.W., Brands M.W., Hall J.E. Chronic leptin infusion increases arterial pressure. // Hypertension. 1998. - Vol. 31. - P. 409 - 414.
249. Shibata R., Ouchi N., Kihara S. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. // J. Biol. Chem. 2004. - Vol. 279. - P. 28670 - 28674.
250. Shibata R., Ouchi N., Ito M. et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. // Nat. Med. 2004. - Vol. 10. - P. 1384 - 1389.
251. Shimomura I., Funahashi Т., Takahashi M. et al. Enhanced expression of PAI-I in visceral fat. Possible contributor to vascular disease in obesity. // Nat. Med. 1996. - Vol. 2. - P. 800 - 803.
252. Shishehbor M.H., Hoogwerf В .J., Lauer M.S. Association of triglyceride-to-HDL cholesterol ratio with heart rate recovery. // Diabetes Care. 2004. - Vol. 27.-P. 936-941.
253. Skurk С., Izumiya Y., Maatz H. et al. The F0X03a transcription factor regulates cardiac myocyte size downstream of АКТ signaling. // J. Biol. Chem. — 2005. Vol. 280. - P. 20814 - 20823.
254. Soderberg S., Ahren В., Jansson J.H. et al. Leptin is associated with increased risk of myocardial infarction. // J. Intern. Med. 1999. - Vol. 246. - P. 409-418.
255. Spies C., Otte C., Kanaya A. et al. Association of metabolic syndrome with exercise capacity and heart rate recovery in patients with coronary heart disease in the Heart and Soul Study. // Am. J. Cardiol. 2005. - Vol. 95. - P. 1175 -1179.
256. Steinberg G.R., Parolin M.L., Heigenhauser G.J.F., Dyck D.J. Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. // Am. J. Physiol. Endocrinol. Metab. 2002. -Vol. 283. - P. E187 - E192.
257. Steppan C., Bailey S., Bhat S. et al. The hormone resistin links obesity to diabetes. // Nature. 2001. - Vol. 409. - P. 307 - 312.
258. Stewart K.J. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. // JAMA. 2002. - Vol. 288. - P. 1622 - 1631.
259. Sundstrom J., Lind L., Nystrom N. et al. Left ventricular concentric remodeling rather than left ventricular hypertrophy is related to the insulin resistance syndrome in eldery men. // Circulation. 2000. - Vol. 101. - P. 2595 - 2600.
260. Sundstrom J., Lind L., Vessby B. et al. Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 10 year later. // Circulation. 2001.-Vol. 103.-P. 836-841.
261. Sutherland C., Leighton I. A., Cohen P. Inactivation of glycogen synthase ki-nase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signaling. // Biochem J. 1993. - Vol. 296. - P. 15 - 19.
262. Swan L., Birnie D.H., Padmanabhan S. et al. The genetic determination of left ventricular mass in healthy adults. // Eur. Heart J. 2003. - Vol. 24. - P. 577-582.
263. Tajmir P., Ceddia R.B., Li R.-K. et al. Leptin increases cardiomyocyte hyperplasia via extracellular signal-regulated kinase- and phosphatidylinositol 3-kinase-dependent signaling pathways. // Endocrinology. 2004. - Vol. 145. — P. 1550- 1555.
264. Takahashi N., Nakagawa M., Saikawa T. et al. Effect of essential hypertension on cardiac autonomic function in type 2 diabetic patients. // J. Am. Coll. Cardiol. 2001. - Vol. 38. - P. 232 - 237.
265. Takazoe K., Ogawa H., Yasue H. et al. Increased plasminogen activator inhibitor activity and diabetes predict subsequent coronary events in patients with angina pectoris. // Ann. Med. 2001. - Vol. 33. - P. 206 - 112.
266. Takemoto F., Katori H., Sawa N. et al. Plasma adiponectin: a predictor of coronary heart disease in hemodialysis patients a Japanese prospective eight-year study. // Nephron. Clin. Pract. - 2009. - Vol. 111. - P. 12 - 20.
267. Tao Y., Cianflone K., Sniderman A.D. et al. Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. // Biochim. Bi-ophys. Acta. 1997. - Vol. 1344. - P. 221 - 229.
268. Tarazi R.C., Levy M.N. Cardiac responses to increased afterload. State-of-the-art review. // Hypertension. 1982. - Vol. 4. - P. 8 - 18.
269. Tian R., Musi N., D'Agostino et al. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy.//Circulation.-2001.-Vol. 104.-P. 1664- 1669.
270. Trost S.U., Belke D.D., Bluhm W.F. et al. Overexpression of the sarcoplasmic reticulum Ca2+-ATPase improves myocardial contractility in diabetic cardiomyopathy.//Diabetes. 2002. - Vol. 51.-P. 1166- 1171.
271. Tschritter O., Fritsche A., Thamer C. et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. // Diabetes. 2003. - Vol. 52. - P. 239 - 243.
272. Ugur-Altun В., Altun A., Tatli E. et al. Relationship between insulin resistance assessed by HOMA-IR and exercise test variables in asymptomatic middle-aged patients with type 2 diabetes. // J. Endocrinol. Invest. 2004. - Vol. 27. - P. 455-461.
273. Van Gaal L., Rillaerts E., Creten W., De Leeuw I. Relationship of body fat distribution pattern to atherogenic risk factors in NIDDM. Preliminary results. // Diabetes Care. 1988. - Vol. 11. - N. 2. - P. 103 - 106.
274. Van Heek M., Compton D.S., France C.F. et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. // J. Clin. Invest. 1997. -Vol. 99.-P. 385 -390.
275. Varma V., Yao-Borengasser A., Rasouli N. et al. Human visfatin expression: relationship to insulin sensitivity, intramyocellular lipids, and inflammation. // J. Clin. Endocrinol. Metab. 2007. - Vol. 92. - P. 666 - 672.
276. Verdecchia P., Reboldi G., Schillaci G. et al. Circulating insulin and insulin growth factor-1 are independent determinants of left ventricular mass and geometry in essential hypertension. // Circulation. 1999. - Vol. 100. - P. 1802 -1807.
277. Vozarova В., Weyer С., Hanson К. et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. // Obes. Res. — 2001. Vol. 9. P. 414-417.
278. Wahrenberg H., Lonnqvist F., Amer P. Mechanisms Underlying Regional Differences in Lipolysis in Human Adipose Tissue. // J. Clin. Invest. 1989. -Vol. 84.-P. 458-67.
279. Wakasaki H., Koya D., Schoen F.J. et al. Targeted overexpression of protein kinase С (32 isoform in myocardium causes cardiomyopathy. // Proc. Natl. Acad. Sci. USA. 1997. - Vol. 94. - P. 9320 - 9325.
280. Wallace A.M., McMahon A.D., Packard C.J. et al. Plasma leptin and the risk of cardiovascular disease in the West of Scotland Coronary Prevention Study (WOSCOPS). // Circulation. 2001. - Vol. 104. - P. 3052 - 3056.
281. Wang C.C., Goalstone M.L., Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. // Diabetes. 2004. - Vol. 53. -P. 2735-2740.
282. Wannamethee S.G., Whincup P.H., Lennon L., Sattar N. Circulating adiponectin levels and mortality in eldery men with and without cardiovascular disease and heart failure. // Arch. Int. Med. 2007. - Vol. 167. - P. 1510 -1517.
283. Weber K.T., Sun Y., Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones. // Hypertension. 1994. - Vol. 23. - P. 869 -877.
284. Welsh P., Murray H.M., Buckley B.M. et al. Leptin predicts diabetes but not cardiovascular disease. Results from a large prospective study in an elderly population. // Diabetes Care. 2009. - Vol. 32. - P. 308 - 310.
285. Weyer С., Tataranni P.A., Pratley R.E. Insulin action and insulinemia are closely related to the fasting complement C3, but not acylation stimulating protein concentration. // Diabetes Care. 2000. - Vol. 23. - P. 779 - 785.
286. Wheatcroft S.B., Williams I.L., Shah A.M., Kearney M.T. Pathophysiological implications of insulin resistance on vascular endothelial function. // Diabet. Med. 2003. - Vol. 20. - P. 255 - 268.
287. Williams S.B., Cusco J.A., Roddy M.A. et al. Impaired nitric oxide-mediated vasodilatation in patients with non-insulin-dependent diabetes melli-tus. // J. Am. Coll. Cardiol. 1996. - Vol. 27. - P. 567 - 574.
288. Wolk R., Berger P., Lennon R.J. et al. Plasma leptin and prognosis in patients with established coronary atherosclerosis. // J. Am. Coll. Cardiol. 2004. -Vol. 44.-P. 1819- 1824.
289. Wong C.Y., O'Moore-Sullivan Т., Leano R. et al. Alterations of left ventricular myocardial characteristics associated with obesity. // Circulation. -2004. Vol. 110. - P. 3081 - 3087.
290. World Health Organization Report. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. WHO, Geneva, 1999. - 59 p.
291. Xu F.-P., Chen M.-S., Wang Y.-Z. et al. Leptin induces hypertrophy via endothelial-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. // Circulation. 2004. - Vol. 110. - P. 1269 - 1275.
292. Yamauchi Т., Kamon J., Waki H. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. // Nat. Med. 2001. - Vol. 7. - N. 8. - P. 941 - 946.
293. Yamauchi Т., Kamon J., Minokoshi Y. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. //Nat. Med. 2002. - Vol. 8.-N. ll.-P. 1288- 1295.
294. Ybarra J., Pou J.M., Planas F. et al. Correlation between insulin resistance surrogates and echocardiographic findings in asymptomatic patients with morbid obesity: a cross-sectional study. // Endocr. Pract. 2007. - Vol. 13. - P. 590 -600.
295. Ylitalo K., Pajukanta P., Meri S. et al. Serum C3 but not plasma acylation-stimulating protein is elevated in Finnish patients with familial combined hy-perlipidemia. // Arterioscler. Thromb. Vase. Biol. 2001. - Vol. 21. - P. 838 -843.
296. Yeh S.-S., Schuster M.W. Geriatric cachexia: the role of cytokines. // Am. J. Clin. Nutr. 1999. - Vol. 70. - P. 183 - 197.
297. Zhou H., Song X., Briggs M. et al. Adiponectin represses gluconeogenesis independent of insulin in hepatocytes. // Biochem. Biophys. Res. Commun. -2005. Vol. 338. - P. 793 - 799.
298. Zhou Y.-T., Grayburn P., Karim A. et al. Lipotoxic heart disease in obese rats: implications for human obesity. // Proc. Natl. Acad. Sci. USA. 2000. -Vol. 97.-P. 1784- 1789.
299. Ziegler D., Zentai C., Perz S. et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. // Exp. Clin. Endocrinol. Diabetes. 2006. - Vol. 114. - P. 153 -159.
300. Zoccali C., Mallamaci F., Tripepi G. et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. // J. Am. Soc. Nephrol. -2002. Vol. 13. - P. 134 - 141.136