Автореферат и диссертация по медицине (14.00.44) на тему:Экспериментальное обоснование и оценка первого опыта клинического применения терапевтического ангиогенеза с использованием генов VEGF и bFGF
Оглавление диссертации Лукашкин, Михаил Анатольевич :: 2005 :: Москва
Список принятых сокращений.
Введение.
Глава 1 ОБЗОР ЛИТЕРАТУРЫ.
1.1 Ангиогенез, артериогенез, васкулогенез. Механизмы ангиогенеза.
1.2 Роль VEGF в ангиогенезе.
1.3 Роль FGF в ангиогенезе.
1.4 Терапевтический ангиогенез.
Генная терапия.
Векторные системы доставки генов.
Способы доставки генетического материала.
Потенциальные побочные эффекты терапевтического ангиогенеза.
1.5 Результаты применения терапевтического ангиогенеза в клинике.
Глава 2 МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
2.1 Методика экспериментального исследования.
2.1.1 Модель хронической ишемии скелетной мышцы крысы.
2.1.2 Методика оценки эффективности ангиогенных препаратов.
2.2 Общая характеристика больных.
2.3 Ангиостимулин: получение, безопасность, ангиогенный эффект, техника применения в клинике.
2.3.1 Получение плазмидной конструкции, содержащей ген VEGF165.
2.3.2 Исследование токсичности и переносимости ДНК VEGF 165.
2.3.3 Исследование эффективности Ангиостимулина в эксперименте.
2.3.4 Интраоперационное применение Ангиостимулина.
2.4 Лазерные установки.
2.5 Методики исследования в клинике.
2.5.1 Электрокардиографическое исследование.
2.5.2 Проба с физической нагрузкой.
2.5.3 Эхокардиографическое исследование (ЭхоКГ).
2.5.4 Дуплексное исследование экстракраниального отдела брахиоцефапъных сосудов.
2.5.5 Коронарография, вентрикулография.
2.5.6 Синхронизированная с ЭКГ однофотонная эмиссионная КТмиокарда.
2.5.7 Позитронная эмиссионная томография миокарда.
2.5.8 Изучение качества жизни.
2.6 Статистическая обработка данных.
Глава 3 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
3.1 Результаты экспериментального исследования.
3.2 Непосредственные результаты операций. Анализ осложнений и летальности.
3.3 Результаты отдаленных исследований пациентов.
3.3.1 Оценка изменения сократимости левого желудочка по данным ЭхоКГ.
3.3.2 ОФЭКТс с 99тТс-тетрофосмииом.
3.3.2.1 Сегментарная оценка показателей накопления РФП (по всем сегментам без разделения на группы в зависимости от исходного накопления РФП).
3.3.2.2 Сегментарная оценка перфузии в динамике в зависимости от исходного (дооперационного) состояния миокарда.
3.3.2.3 Оценка площади дефектов перфузии в динамике.
3.3.2.4 Общая сегментарная оценка перфузии в зависимости от типа лечебного воздействия.
3.3.3 Клинические примеры применения Ангиостимулина и оценки его эффективности.
3.3.4 Оценка качества жизни пациентов.
Введение диссертации по теме "Сердечно-сосудистая хирургия", Лукашкин, Михаил Анатольевич, автореферат
Транслюминальная баллонная ангиопластика и аорто-коронарное шунтирование в настоящее время стали золотым стандартом в лечении коронарного атеросклероза. Эффективность данных процедур лимитирована развитием рестенозов сосудов и окклюзиями шунтов. Кроме того, более чем у 15% пациентов не может быть достигнута полная реваскуляризация миокарда при выполнении этих процедур по различным причинам [Jones E.L. et al., 1983; Mukhcrjce D. et al.,1999J. По другим данным полной реваскуляризации не удается достичь у 37% пациентов, подвергшихся АКШ [Levin D.C., Beckmann C.F. et al., 1982J.
В такой стране как США ежегодно от 100 тысяч до 200 тысяч человек не являются кандидатами для интервенционных процедур из-за диффузного поражения сосудов сердца [Mukhcrjec D. et al., 1999J. Неудача в реваскуляризации даже одной ишемизированной области миокарда приводит к ухудшению результатов лечения (уменьшению выживаемости и возврату стенокардии) не зависимо от выполненного анастомоза левой внутренней грудной артерии (ЛВГА) с передней межжелудчковой ветвыо (ПМЖВ) левой коронарной артерии [Scott R., Blackstonc et al., 2000]. Эти пациенты нуждаются в альтернативной стратегии реваскуляризации, которой может стать терапевтический аншогенез.
Цель настоящей работы — экспериментальное обоснование и оценка первого опыта клинического использования терапевтического аппюгенеза с i применением генов факторов роста сосудов у больных ИБС.
Для достижения данной цели были определены следующие задачи:
1. Экспериментально оценить эффект применения препарата на основе гена VEGF человека («Аншостимулин») и гена bFGF в модели периферической ишемии скелетной мышцы конечности крысы, зависимость эффекта от дозы вводимых препаратов.
2. Оценить безопасность применения гена VEGF человека (препарата «Ангиостимулин»).
3. Оценить первые результаты использования препарата «Ангиостимулин» в сочетании с другими методами прямой и непрямой реваскуляризации миокарда у больных ишемической болезнью сердца (аорто-коронарным шунтированием, миниинвазивной реваскуляризацией миокарда, трансмиокардиалыюй лазерной реваскуляризацией и их комбинацией) в ближайшем и отдаленном послеоперационных периодах.
Научная новизна и практическая значимость:
Терапевтический ангиогенез является перспективным и многообещающим методом лечения больных ИБС. Описанный в литературе опыт упешного экспериментального и клинического применения генной терапии у больных ишемической болезнью сердца позволяет надеяться на то, что скоро она может занять достойное место в лечении данной патологии наряду с другими методами лечения, а так же в сочетании с ними. Применение данного метода лечения становится особенно привлекательным у пациентов с неоперабельным поражением сосудов сердца, которые представляют собой одну из самых тяжелых групп ишемических больных, эффективность лечения которых остается очень низка на современном уровне развития кардиологии и кардиохирургии.
Положения, выносимые на защиту:
1. Ангиогенный эффект введения генов факторов роста сосудов прослеживается в экспериментальных исследованиях в модели хронической ишемии скелетной мышцы крысы.
2. Применение гена VEGF (препарата «Ангиостимулин») безопасно, не вызывает побочных эффектов в ближайшем и отдаленном послеоперационных периодах.
3. Сочетанное применение гена VEGF вместе с традиционными методами реваскуляризации (трансмиокардиальной лазерной реваскуляризацией С02 лазером и аорто-коронарным шунтированием) эффективно улучшает перфузию миокарда.
Работа выполнена на базе отделения неинвазивной аритмологии НЦ ССХ имени А.Н. Бакулева (руководитель - член-корр. РАМН д.м.н. профессор Е.З.Голухова), при участии отдела ядерной диагностики (руководитель - д.м.н. И.П. Асланиди), лаборатории трансмиокардиальной лазерной реваскуляризации (руководитель — д.м.н. И.И. Беришвили), отделения миниинвазивной коронарной хирургии (руководитель — к.м.н. В.Ю. Мерзляков), отделения лечения гипертрофической кардиомиопатии (руководитель - д.м.н. К.В. Борисов), отделения патологической анатомии (руководитель - д.м.н. Р.А. Серов), отдела экспериментальных исследований (руководитель-д.м.н. М.В. Соколов).
Автор выражает искреннюю благоларность всем сотрулникам НЦ ССХ, принимавшим непосрелственное участие в работе, без лружеской поллержки и тесного контакта с которыми выполнение указанной работы было бы немыслимо.
Особую благоларность хочется выразить моему руковолителю акалемику РАМН и лиректору НЦССХ имени А.Н. Бакулева Лео Антоновичу Бокерия, который первым в России начал применять терапевтический ангиогенез у больных с ишемической болезнью серлца и сам непосрелственно выполнил операции у большинства пациентов, вошелших в ланное исслелование, оказал мне всестороннюю поллержку в написании этой диссертации.
Слова искренней благоларности автор хочет выразить л.м.н. член-корреспонленту РАМН руковолителю отлеления неинвазивной аритмологии НЦССХ имени А.Н. Бакулева (ОНА) Голуховой Елене Зеликовне, созлавшей благоприятные условия аля полготовки этой лиссертации.
Большое спасибо хочется сказать к.м.н. Еремеевой Марине Викторовне, предоставившей возможность изучить действие препаратов, созланных в сотрулничестве с Институтом Биологии Гена РАН.
Заключение диссертационного исследования на тему "Экспериментальное обоснование и оценка первого опыта клинического применения терапевтического ангиогенеза с использованием генов VEGF и bFGF"
ВЫВОДЫ
1. В эксперименте на модели хронической ишемии скелетной мышцы крысы выявлен достоверный ангиогенный эффект препарата Ангиостимулин (ген VEGF). Не выявлен достоверный ангиогенный эффект при испытании препарата на основе гена bFGF.
2. Первый опыт использования Ангиостимулина в клинике говорит о безопасности его применения. Не отмечено никаких побочных действий препарата и осложнений при обследовании пациентов в раннем и отдаленном послеоперационном периодах. Введение препарата сопровождается единичными экстрасистолами в момент инъекции (при операции на работающем сердце).
3. При посегментарном анализе кровоснабжения миокарда выявлен достоверный прирост перфузии в сроки от 2-4 месяцев до года после операции в сегментах с введением Ангиостимулина и воздействием ТМЛР СО2 лазером. При изолированном воздействии ТМЛР СО2 лазером достоверный прирост перфузии начинает определяться лишь через 6 месяцев после операции. При использовании с АКШ только Ангиостимулина мы не наблюдали достоверного положительного прироста перфузии в сроки от 2-4 месяцев до года. Прирост перфузии при сочетанном применении ТМЛР СОг лазером и Ангиостимулина проявляется на фоне ишемии миокарда и не прослеживается в шунтированных сегментах, где ишемия после операции исчезает.
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ
1. Необходимы дальнейшие экспериментальные испытания препарата на основе гена bFGF, прежде чем можно будет рекомендовать его клиническое применение.
2. Доказанная клиническая эффективность и безопасность применения Ангиостимулина позволяет рекомендовать его клиническое использование у больных, которым невозможно выполнить адекватную реваскуляризацию миокарда во время операции аорто-коронарного шунтирования.
3. Целесообразно сочетанное применение Ангиостимулина с ТМЛР СО2 лазером, так как в этой комбинации наблюдается достоверный положительный клинический эффект.
4. Нецелесообразно вводить Ангиостимулин в шунтированные области миокарда, так как адекватная реваскуляризация исключает возможность проявления ангиогенного эффекта препарата.
Список использованной литературы по медицине, диссертация 2005 года, Лукашкин, Михаил Анатольевич
1. Бокерия Л.А., Беришвили И.И., Асланиди И.П., Вахромеева М.Н.
2. Трансмиокардиальная лазерная реваскуляризация: перфузия, функция и метаболизм миокарда. — М.: Издательство НЦССХ им.А.Н.Бакулева РАМН, 2004.-220 е., цв.иллюстр.
3. Бокерия Л.А., Г.П. Георгиев, Е.З. Голухова, М.В. Еремеева, Н.В.
4. Бокерия Л.А., Г.П. Георгиев, Е.З. Голухова, Т.Т. Какучая, М.В.
5. Бокерия Л.А., Голухова Е.З., Еремеева М.В., Киселев С.Л., Мерзляков
6. Бокерия J1.A., Е.З. Голухова, М.В. Еремеева, СЛ. Киселев, И.И.
7. Еремеева М.В. «АНГИОГЕННЫЕ ФАКТОРЫ И СТИМУЛЯЦИЯ
8. НЕОАНГИОГЕНЕЗА ПРИ ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА» Диссертация на соискание ученой степени кандидата медицинских наук, 2002 г.
9. Фейгенбаум X. Эхокардиография. М.: Видар, 1999.
10. Хелимский А.А. Непосредственные и среднеотдаленные результатытрансмиокардиалыюй лазерной реваскуляризации у больных ИБС. Дис. канд. мед. наук. Москва, 1999.
11. Achen M.G., Jeltsch М., Kukk Е., Makinen Т., Vitali A., Wilks A.F., Alitalo
12. К., Slacker S.A. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548-553, 1998.
13. Alon Т., Hemo I., Itin A., Peter J., Stone, J. and Keshet E. (1995). Vascularendothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1: 1024—1028.
14. Arnal J.F., Yamin J., Dockery S., Harrison D.G. Regulation of endothelialnitric oxide synthase mRNA, protein, and activity during cell growth. Am J Physiol 1994;267:C1381-1388.
15. Arras M. et al. Monocyte activation in angiogenesis and collateral growth inthe rabbit hindlimb. J. Clin. Invest. 101, 40-50 (1998).
16. Asahara T. et al. Synergistic effect of VEGF and bFGF on angiogenesis invivo. Circulation, 1995; 98; 11-365-371.
17. Asahara Т., Masuda H., Takahashi Т., et al. Bone marrow origin ofendothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221-228.
18. Baek S., March K.L. (1998). Circ. Res. 82. 295-305.
19. Baird A. Potential mechanisms regulating the extracellular activities ofbFGF. Mol. Reprod. Dev., 1994; 39: 43-8.
20. Banai S., Jakhtsch M.T., Shou M. et al. Angiogenic-induced enhancement ofcollateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs//Circulation.-1994.-Vol.89.-P.2183-2189.
21. Barger A.C. et al. Hypothesis: vasa vasorum and neovascularization ofhuman coronary arteries. A possible role in the pathophysiology of atherosclerosis. N. Engl. J. Med., 1984; 310: 175-7.
22. Ben-Av, P., Crofford L., Wilder R. L. and Hla T. (1995). Induction ofvascular endothelial growth factor expression in synovial fibroblasts. FEBS Lett. 372: 83-87.
23. Boussairi E.H., Sassard J., Cardiovascular effects of bFGF in rats., J.
24. Cardiovasc. Pharmacol., 1994; 23: 99-102.
25. Braunwald E. Heart disease: a textbook of cardiovascular medicine / Ed.
26. E.Braunwald. 4th ed. - Philadelphia.: Sounders. - 1992. - 1874, Xl.IV p.
27. Breier G., Albrecht U., Sterrer S., and Risau W. (1992). Expression ofvascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114: 521-532.
28. Brogi E., Schatteman G., Wu Т., Kim E. A., Varticovski L., Keyt B. and1.ner J. M. (1996). Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest. 97: 469476.
29. Campeau L. Grading of angina pectoris // Circulation. — 1976. — Vol.54. — P.522.523.
30. Clauss M., Gerlach M., Gerlach H., Brett J., Wang F., Familletti P. C, Pan
31. Y. C, Olander J. V., Connolly D. T. and Stern D. (1990). Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172: 1535-1545.
32. Cohen Т., Nahari D., Cerem L. W., Neufeld G., and Levi B. Z, (1996).1.terleu-kin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem. 271: 736-741.
33. Communal C. et al. Decreased efficiency of adenovirusmediated genetransfer in aging cardiomyocytes. Circulation 107, 1170-1175 (2003).
34. Cuevas P. et al. Vascular response to bFGF when infused onto the normaladventitia or into the injured media of the rat carotid artery. Circ. Res., 1991;69:360-9.
35. Cuevas P., Carceller F. et al. Hypotensive activity of FGF. Science, 1991;254: 1208-10.
36. Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Gimenez- Gallego G.
37. Hypertensive activity of fibroblast growth factor. Science 254:12081210,1991.
38. Cuevas P., Garcia-Calvo M., Carceller F., Reimers D., Zazo M., Cuevas В.,
39. Dichek D.A., Anderson J., Kelly A.B. et al. Circulation. (1996). 93. 201209.
40. Dor Y. et al. Conditional switching of VEGF provides new insights intoadult neovascularization and pro-angiogenic therapy. EMBO J. 21, 19391947 (2002).
41. Duan J., Murohara Т., Ikeda H., et al. Hypercholesterolemia inhibitsangiogenesis in response to hindlimb ischemia:nitric oxide-dependent mechanism. Circulation 2000; 102(Suppl 3):III370-376.
42. Dunn P.F., Newman K.D., Jones M. et al. (1996). Circulation. 93. 14391446.
43. Dvorak H.F. Tumors: wounds that do not heal. Similarities between tumorstroma generation and wound healing. N Engl J Med 315:1650-1659, 1986.
44. Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. Vascular permeabilityfactor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029-1039, 1995.
45. Dvorak H.F., Harvey V.S., Estrella P., Brown L.F., McDonagh J., Dvorak
46. A.M. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 57:673-686, 1987.
47. Edelman E.R. et al. bFGF enhances the coupling of intimal hyperplasia andproliferation of vasa vasorum in injured rat arteries. J. Clin. Invest., 1992; 89: 465-73.
48. Ehsan A.,Mann M.J., Dzau V.J. Gene therapy for cardiovasculardisease andvascular grafts. In: Templeton NS, Lasic DD, editors. Gene therapy: therapeutic mechanisms and strategies. New York:Marcel Dekker; 2000. p. 421-38.
49. Esser S., Wolburg K., Wolburg II., Breier G., Kurzchalia Т., Risau W.
50. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947-959, 1998.
51. Fernandez-Ortiz A., Meyer B.J., Mailhac A. et al. (1994). Circulation. 89.1518-1522.
52. Ferrara N. and Henzel W.J. (1989). Pituitary follicular cells secrete a novelheparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161: 851-858.
53. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growthfactor. Endocr. Rev. 18:4-25, 1997.
54. Ferrara N., Поиск K., Jakeman L., and Leung D. W. (1992). Molecular andbiological properties of the vascular endothelial growth family of proteins. Endocr. Rev. 13: 18-32.
55. Finnerty H., Kelleher К., Morris G. E., Bean K, Merberg D. M., Kriz R.,
56. Morris J. C., Sookdeo H., Turner K.J. and Wood C. R. (1993). Molecular cloning of murine FLT and FLT4. Oncogene 8: 2293-2298.
57. Flugelman M.Y., Jaklitsch M.T., Newman K.D. et al. (1992). Circulation.85. 1110-1117.
58. Folkman J. Tumor angiogenesis: therapeutic implications (review)., New
59. ENG.J.Med., 1971, 285, 1182-1186.
60. Forsythe J. A., Jiang В. H., Iyer N. V., Agani F., Leung S. W., Koos R. D.,and Semenza G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604-4613.
61. Frank S., Hubner G., Breier G., Longaker M. Т., Greenhalg D. G. and
62. Werner S. (1995). Regulation of VEGF expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem. 270: 12607-12613.
63. Galland F., Karamysheva A., Matter M. G., Rosnet O., Marchetto S., and
64. Birn-baum D. (1992). Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13: 475-478.
65. Gerber H. P., Condorelli F., Park J. and Ferrara N. (1997). Differential transcriptional regulation of the two VEGF receptor genes. Flt-1, but not Flk-1/ KDR, is up-regulated by hypoxia. J. Biol. Chem., 272: 23659-23667.
66. Gerber H.P., Kowalski J., McMurtrey A., Yan M., Keyt В., Dixit V., Ferrara
67. N. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway: requirement for Flk-l/KDR activation. J Biol Chem 273:30336-30343, 1998.
68. Gerber Т. С. et al. The coronary venous system: an alternate portal to themyocardium for diagnostic and therapeutic procedures in invasive cardiology. Curr. Interv. Cardiol. Rep. 2, 27-37 (2000).
69. Goldberg M.A. and Schneider T.J. (1994). Similarities between the oxygensensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin.!. Biol. Chem. 269: 4355-4361.
70. Granger H.J., Ziche M., Hawker J.R., Jr, Meininger C.J., Czisny L.E.,
71. Zawieja D.C. Molecular and cellular basis of myocardial angiogenesis. Cell Mol Biol Res 1994;40:81-85.
72. Grines C.L., Watkins M.W., Helmer G., et al. Angiogenic gene therapy
73. AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1290-7.
74. Hamaway A.H., Lee L.Y., Crystal R.G., Rosengart Т.К. Cardiacangiogenesis and gene therapy: a strategy for myocardial revascularization. Curr Opin Cardiol 1999;14:515-22.
75. Hanahan D. Signaling vascular morphogenesis and maintenance. Science.1997; 277: 48-50.
76. Hashimoto E., Ogita Т., Nakaoka Т., Matsuoka R., Takao A., and Kira Y.1994). Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am. J. Physiol 267: H1948-H1954.
77. Heil M. et al. Blood monocyte concentration is critical for enhancement ofcollateral artery growth. Am. J. Physiol. Heart Circ. Physiol. 283, H2411-H2419 (2002).
78. Helisch A. & Schaper W. Arteriogenesis: the development and growth ofcollateral arteries. Microcirculation 10, 83-97 (2003). A current and comprehensive review of arteriogenesis.
79. Hendel R.C., Henry T.D., Rocha-Singh K. et al. Effect of intracoronaryrecombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 2000;101:118-21.
80. Henry T. D. et al. The VIVA trial: Vascular endothelial growth factor in1.chemia for Vascular Angiogenesis. Circulation 107, 1359-1365 (2003).
81. Henry T.D., Abraham J.A. Review of preclinical and clinical results withvascular endothelial growth factors for therapeutic angiogenesis. Curr Intervent Cardiol Rep 2000;2:228-241.
82. Henry T.D., Annex B.H., Azrin M.A. et al. Final results of the VIVA trial ofrhVEGF for human therapeutic angiogenesis. Circulation 1999; 100:1476.
83. Hertig A.T. Angiogenesis in the early human chorion and in the primaryplacenta of the macaque moncey. Contrib.Edryol. Carnegie Inst., 1935, 25: 37-43.
84. Hughes S.E., Crossman D., Hall P.A. Expression of bFGF and aFGF andtheir receptor in normal and atherosclerotic human arteries. Cardiovasc. Res., 1993; 27: 1214-9.
85. Hughes S.E., Hall P.A. Immunologicalization of FGFR-1 and its ligands inhuman tissues. Lab. Invest., 1993; 69: 173-82.
86. Isner J.M. Angiogenesis for revascularization of ischaemic tissues. Eur1. Heart J 1997;18:1-2.
87. Isner J.M., Vale P.R., Symes J.F., Losordo D.W. Assessment of risksassociated with cardiovascular gene therapy in human subjects. Circ Res 2001;89(5):3 89-400.
88. Ito W.D. et al. Monocyte chemotactic protein-1 increases collateral andperipheral conductance after femoral artery occlusion. Circ. Res. 80, 829-837(1997).
89. Jakeman L. В., Armanini M., Philips II. S. and Ferrara N. (1993).
90. Developmental expression of binding sites and mRNA for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology 133: 848-859.
91. Jakeman L. В., Winer J., Bennett G. L., Altar C. A., and Ferrara N. (1992).
92. Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J. Clin. Invest. 89: 244-253.
93. Jang J.J., Но H.K., Kwan H.H., Fajardo L.F., Cooke J.P. Angiogenesis isimpaired by hypercholesterolemia: role of asymmetric dimethylarginine. Circulation 2000; 102:1414-1419.
94. Jones E.L., Craver J.M., Guyton R.A., Bone D.K., Hatcher C.R., Jr,
95. Riechwald N. Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983;51:7-12.
96. Jonston D.E., Williams L.J. Structural and functional diversity in the FGFRmultigene family. Adv. Cancer. Res., 1993; 60: 1-41.
97. Joukov V., Pajusola K., Kaipainen A., Chilov D., Lahtinen I., Kukk E.,
98. Saksela 0., Kalkkinen N., Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBOJ 15:1751, 1996.
99. Khurana R. & Simons M. Insights from angiogenesis trials using fibroblastgrowth factor for advanced arteriosclerotic disease. Trends Cardiovasc. Med. 13, 116-122(2003).
100. Kohmoto Т., De Rosa C., Yamamoto N. et al. Evidence of vascular growthassociated with laser treatment of normal canine myocardium//Ann.Thorac.Surg.-1998. Vol.65.-P.1360-1367.
101. Kornowsky R., Fuchs S., Leon M.B. et al.(2000). Circulation. 101. 454-458.
102. Ku D.D., Zaleski J.K., Lin S., Brock T.A. Vascular endothelial growthfactor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265:H586-H592, 1993.
103. Laham R. J. et al. Intracoronary and intravenous administration of basicfibroblast growth factor: myocardial and tissue distribution. Drug Metab. Dispos. 27, 821-826(1999).
104. Laham R. J. et al. Local perivascular delivery of basic fibroblast growthfactor in patients undergoing coronary bypass surgery: results of a phase I randomized, doubleblind, placebo-controlled trial. Circulation 100, 1865-1871 (1999).
105. Laham R., Simons M. Growth factor therapy in ischemic heart disease. In:
106. Rubanyi G., ed. Angiogenesis in health and disease. New York: Marcel Decker, 2000:451-475.
107. Laham R.J., Chronos N.A., Pike M. et al. Intracoronary basic fibroblastgrowth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 2000;36:2132-2139.
108. Laitinen M., Hartikainen J., Hiltunen M.O. et al. Cathetermediated vascularendothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000; 11(2):263-70.
109. Lamping K.G., Roiss C.D., Chun J.A. (1997). Am. J. Physiol. 272. H3101. H317.
110. Lazarous D.F. et al. Comparative effects of bFGF and VEGF on coronarycollateral development and the arterial response to injury. Circulation, 1996; 94: 1074-82.
111. Lazarous D.F. et al. Effect of chronic systemic administration of bFGF oncollateral development in the canine heart., Circulation, 1995; 91: 14553.
112. Lederman R. J. et al. Therapeutic angiogenesis with recombinant fibroblastgrowth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359, 2053-2058 (2002).
113. Lee J., Gray A., Yuan J., Luoh S.M., Avraham H., Wood W.I. «Vasculareodothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA 93:19881992, 1996.
114. Lee R.J., Springer M.L., Blanco-Bose W.E. et al. VEGF gene delivery tomyocardium: deleterious effects of unregulated expression. Circulation 2000; 102(8):898-901.
115. Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. Vascularendothelial growth factor is a secreted angiogenic mitogen. Science 246:1306-1309, 1989.
116. Li J., Brown L. F., Hibberd M. G., Grossman J. D., Morgan, J. P., and
117. Simons, M. (1996). VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270: H1803-H1811.
118. Li J., Post M., Volk R., et al. PR39, a peptide regulator of angiogenesis. Nat1. Med 2000;6:49-55.
119. Losordo D.W., Vale P.R., Isner JM. Gene therapy for myocardialangiogenesis. Am Heart J 1999; 138:S 132-41.
120. Losordo D.W., Vale P.R., Symes J.F., et al. Gene therapy for myocardialangiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800-2804.
121. Mack C.A., Patel S.R., Rosengart Т.К. Myocardial angiogenesis as apossible mechanism for TMLR efficacy // J.Clin.Laser.Med.Surg.-1997.-Vol.15, N 6.-P.275-279.
122. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88: 9267-9271, 1991.
123. Mandriota, S.J., Menoud, P. A., and Pepper, M. S. (1996). Transforminggrowth factor beta 1 down-regulates vascular endothelial growth factor receptor 2/flk-l expression in vascular endothelial cells. J. Biol. Chem. 271: 11500-11505.
124. March K. L. et al. Efficient in vivo catheter-based pericardial gene transfermediated by adenoviral vectors. Clin. Cardiol. 22, 123-129 (1999).
125. March K.L., Madison J.E., Trapncll B.C. (1995). Hum. Gene Ther. 6. 41-53.
126. March R. J. Transmyocardial laser revascularization with the CO2 laser: oneyear results of a randomized, controlled trial. Seminars Thorac. Cardiovasc. Surg. 1999; 11: 12-18.
127. Marshall E. Science.286.2244-2245.
128. Matsunaga, T. et al. Angiostatin inhibits coronary angiogenesis duringimpaired production of nitric oxide. Circulation 105, 2185-2191 (2002).
129. Mazue G., et al., The histopathology of kidney changes in rats and monkeys following intravenous administration of massive doses of FCE 26184, human bFGF. Toxical Pathol., 1993; 21: 490-501.
130. McKeehan W.L., Kan M., Heparin sulphate FGFR complex: structure function relationships. Mol. Reprod. Dev.; 1994; 39: 69-81.
131. Mehdi K., Wilensky R.L., Baek S.Y., Trapnell B.C., March K.L. (1996). J. Am. Coll. Cardiol. 27. 164A. Abstract.
132. Melder, RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK.
133. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med 2:992-997, 1996.
134. Millauer, В., Wizigmann Voos, S., Schnurch, H., Martinez, R., Moller, N.
135. P., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angioge-nesis. Cell 72: 835-846.
136. Minchenko, A., Bauer, Т., Salceda, S., and Caro, J. (1994). Hypoxicstimulation of vascular endothelial growth factor expression in vivo and in vitro. Lab. Invest. 71: 374-379.
137. Monacci, W. Т., Merrill, M.J., and Oldfield, E. H. (1993). Expression ofvascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J. Physiol. 264: C995-1002.
138. Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitorsendostatin or TNP-470 reduce intimal neovascularization and plaque growth inapolipoprotein E-deficient mice. Circulation 1999; 99(13): 1726-32.
139. Muhlhauser, J. et al. Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther. 3, 145-153 (1996).
140. Mukherjee D., Bhatt D.L., Roe M.T., Patel V., Ellis S.G. Direct myocardialrevascularization and angiogenesis—how many patients might be eligible?. Am J Cardiol 1999;84:598-600.
141. Murohara Т., Witzenbichler В., Spyridopoulos I., et al. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vase Biol 1999;19:1156-1161.
142. Neil P. Fam, MD, MSc; Subodh Verma, MD, PhD; Michael Kutiyk, MD,
143. PhD; Duncan J. Stewart, MD «Clinician Guide to Angiogenesis» Circulation. 2003; 108:2613
144. Nevo, N. et al. Increasing endothelial cell permeability improves the efficiency of myocyte adenoviral vector infection. J. Gene Med. 3, 42—50 (2001).
145. O'Brien E.R., Garvin M.R., Dev R., et al. Angiogenesis in human coronaryatherosclerotic plaques. Am J Pathol 1994;145:883-894.
146. Pajusola, K., Aprelikova, O., Korhonen, J., Kaipainen, A., Pertovaara, L.,
147. Alitalo, R., and Alitalo, К (1992). FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52: 5738-5743.
148. Patterson, C, Perrella, M. A., Hsieh, С. M., Yoshizumi, M., Lee, M. E., and
149. Haber, E. (1995). Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J. Biol. Chem. 270:23111-23118.
150. Pecher P., Schumacher B.A. Angiogenesis in ischemic human myocardium: clinical results after 3 years. Ann Thorac Surg 2000;69:1414-1419.
151. Pelletier M.P., Giaid A., Siwaraman S. Angiogenesis and growth factorexpression in a model of transmyocardial rcvascularization//Ann.Thorac.Surg.-1998.-Vol.66.-p.l2-18.
152. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endotheiial growthfactor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endo- -thelial cells. Biochem Biophys Res Commun 181:902-906, 1991.
153. Pertovaara, L., Kaipainen, A„ Mustonen, Т., Orpana, A., Ferrara, N.,
154. Saksela, O., and Alitalo, K. (1994). Vascular endothelial growth factor isinduced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem. 269: 6271-6274.
155. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J 8:3801-3808, 1989.
156. Plouet, J. and Moukadiri, H. J. (1990). Characterization of the receptors forvas-culotropin on bovine adrenal cortex-derived capillary endothelial cells. J. Biol. Chem. 265: 22071-22075.
157. Post, M. J., Laham, R., Sellke, F. W. & Simons, M. Therapeutic . angiogenesis in cardiology using protein formulations. Cardiovasc. Res.49, 522-531 (2001).
158. Quinn, T. P., Peters, K. G., De Vries, C, Ferrara, N., and Williams, L. T. (1993). Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium Proc. Nad. Acad. Sci. USA 90: 7533-7537.
159. Roberts WG, Palade GE. Increased microvascular permeability andendothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369-2379, 1995.
160. Roberts WG, Palade GE. Neovasculature induced by vascular endothelialgrowth factor is fenestrated. Cancer Res 57:765-772, 1997.
161. Roethy W., Yamamoto N., Burkhoff D. An examination of potential mechanisms underlying transmyocardial laser revascularization induced in myocardial blood flow//Semin.Thorac.Cardiovasc.Surg.-1999.Vol.11.-P.24-28.
162. Rosengart TK, Patel SR, Crystal RG. Therapeutic angiogenesis: protein andgene therapy delivery strategies. J Cardiovasc Risk 1999;6:29-40.
163. Ruel, M. et al. Long-term effects of surgical angiogenictherapy with fibroblast growth factor 2 protein. J. Thorac.Cardiovasc. Surg. 124, 28— 34 (2002).
164. Safi J Jr, Gloe TR, Riccioni T, et al. Gene therapy with angiogenic factors:a new potential approach to the treatment of ischemic disease. J Mol Cell Cardiol 1997; 29:2311-25.
165. Sayeed-Shah U., Reul R.M.,Byrne J.G.et al. Combination TMR and gentherapy//Semin.Thorac.Cardiovasc.Surg.-1999.-Vol. 11 .-p.36-39.
166. Schaper, W. & Ito, W. Molecular mechanisms of collateral vessel growth. Circ. Res. 79, 911-919 (1996).
167. Schultz, A. et al. Interindividual heterogeneity in the hypoxic regulation of
168. VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100, 547-552 (1999).
169. Schumacher В., Pecher P., von Specht B.U., Stegmann T. Induction ofneoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998;97:645-650.
170. Scott R., Blackstone E.H., McCarthy P.M., et al. Isolated bypass grafting ofthe left internal thoracic artery to the left anterior descending coronaryartery: late consequences of incomplete revascularization. J Thorac Cardiovasc Surg 2000;120:173-184.
171. Selke FW, Simon M. Angiogenesis in cardiovascular disease: current statusand therapeutic potential. Drugs 1999; 58(3):391-6.
172. Sellke F.W., Wang S.Y., Stamler A., Lopez J .J., Li J., Simons M. Enhancedmicrovascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol 1996;271:H713-720.
173. Shen, H., Clauss, M., Ryan, J., Schmidt, A. M., Tijburg, P., Borden, L.,
174. Connolly, D., Stern, D., and Kao,J. (1993). Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 81: 2767-2773.
175. Shima, D. Т., Adamis, A. P., Ferrara, N., Yeo, К. Т., Yeo, Т. K., Allende,
176. R., Folk-man, J., and D'Amore, P. A. (1995). Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol. Med. 1: 182-193.
177. Simons M, Bonow RO, Chronos NA, et al. Clinical trial in coronaryangiogenesis: issues, problems, consensus. An expert panel summary. Circulation 2000;102:E73-86.
178. Simons M. Therapeutic coronary angiogenesis: a fronte praecipitium a tergolupi?. Am J Physiol Heart Circ Physiol 2001 ;280:H1923-1927.
179. Simons M., Annex B.H., Laham R.J., et al. Pharmacological treatment ofcoronary artery disease with recombinant fibroblast growth factor-2:double-blind, randomized, controlled clinical trial. Circulation 2002;105:788-793.
180. Spanier Т., Smith C.R., BurkofT D. Angiogenesis: a possible mechanismunderlying the clinical benefits of transmyocardial laser revascularization//J.Clin.Laser Med.Surg.-1997.-Vol.l5.-P.269-273.
181. Springer ML, Chen AS, Kraft PE, et al. VEGF gene delivery to muscle:potential role for vasculogenesis in adults. Mol Cell 1998;2(5):549-58.
182. Stone, J., Itin, A., Alon, Т., Pe'er, J., Gnessin, H., Chan Ling, Т., and Keshet,
183. E. (1995). Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15: 4738-4747.
184. Sylven C, Sarkar N, Ruck A, et al. Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGF-A(165) plasmid in patients with inoperable angina pectoris. Coron Artery Dis 2001; 12(3):239^43.
185. Symes J.F., Losordo D.W., Vale P.R., et al. Gene therapy with vascularendothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999;68:830-836.
186. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, et al. Biological actionof angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation ofTie2. Cardiovasc Res. 2001; 49: 659-670.
187. Ulleras, E., Wilcock, A., Miller, S. J. & Franklin, G. C. The sequentialactivation and repression of the human PDGF-B gene during chronic hypoxia reveals antagonistic roles for the depletion of oxygen and glucose. Growth Factors 19, 233-245 (2001).
188. Unemori EN, Ferrara N, Bauer EA, Amento EP. Vascular endothelialgrowth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physio! 153:557—562. 1992.
189. Unger E.F., et al., bFGF enhances myocardial collateral flow in a canine model. Am. J. Physiol., 1994; 266: 1588-95.
190. Vaisman, N., Gospodarowicz, D., and Neufeld, G. (1990). Characterizationof the receptors for vascular endothelial growth factor. J. Biol. Chem. 265: 19461-19466.
191. Vale P, Losordo D, Dunnington C, et al. Direct myocardial injection ofphVEGF165 results of complete patient cohort in phase 1/2 clinical trial. Circulation 1999;100:1-4.
192. Vale PR, Losordo DW, Milliken CE, et al. Left ventricularelectromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000; 102 (9):965-74.
193. Van Royen, N. et al. Effects of local MCP-1 protein therapy on thedevelopment of the collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits.Cardiovasc. Res. 57, 178-185 (2003).
194. Voskuil, M. et al. Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am. J. Physiol. Heart Circ. Physiol. 284, H1422-H1428 (2003).
195. Wang, G. L. and Semenza, G. L. (1995). Purification and characterization ofhypoxia-inducible factor 1. J. Biol. Chem. 270: 1230-1237.
196. Ware, J. A. & Simons, M. Angiogenesis in ischemic heart disease. Nature1. Med. 3,158-164(1997).
197. Warren, R. S., Yuan, H., Madi, M. R., Ferrara, N., and Donner, D. B.1996). Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma. J. Biol. Chem. 271: 2948329488.
198. Whitney M.L. et al., A growth factor mixture that significanty enhancesangiogenesis., J. Am. Coll. Card., 1999, v33, 2, p.354A.
199. Woody M., Mehdi K., Zipes D.P. et al. (1996). J. Am. Coll. Cardiol. 27.31F. Abstract.
200. Wright, M. J. et al. In vivo myocardial gene transfer: optimization,evaluation and direct comparison of gene transfer vectors. Basic Res. Cardiol. 96, 227-236 (2001).
201. Wright, M. J., Wightman, L. M., Latchman, D. S. & Marber, M. S. In vivomyocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther. 8, 1833-1839 (2001).
202. Yamaguchi, T. P., Dumont, D.J., Conlon, R. A., Breitman, M. L., and
203. Rossant, J. (1993). flk-1, an fit-related receptor tyrosine kinase, is an early marker for endothelial cell precursors. Development 118: 489-498.
204. Yamamoto N., Kohmoto Т., Gu A. Et al. Angiogenesis is enchanced in ischemic canine myocardium by transmyocardial laser revascularization//J/Amer.Coll.Cardiol.- 1998.-Vol.31.-P.1426-1433.
205. Yancopoulos G, Davis S, Gale NW, et al. Vascular-specific growth factorsand blood vessel formation. Nature. 2000; 407: 242-248
206. Yang R, Thomas GR, Bunting S, Ко A, Ferrara N, Keyt B, Ross J, Jin H.
207. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol 27:838-844, 1996.