Автореферат и диссертация по медицине (14.00.23) на тему:Ультраструктурное и иммунногистохимическое исследование скелетной мускулатуры человека в норме и при некоторых видах нервно-мышечной патологии
Оглавление диссертации Бубнова, Елена Николаевна :: 2000 :: Саранск
Введение.
Глава 1. Обзор литературы
1.1. Развитие скелетной мускулатуры.
1.2. Классификация и типы мышечных волокон.
1.3. Ультраструктура скелетных мышц человека.
1.3.1. Цитоскелет и якорные белки сарколеммы мышечного волокна.
1.4. Нервно-мышечные взаимодействия.
1.5. Основные морфологические характеристики нервно-мышечных заболеваний.
1.6. Классификация нервно-мышечных заболеваний.
Глава 2. Материалы и методы исследования.
Глава 3. Результаты собственных исследований и их обсуждение
3.1. Получение первичной культуры миобластов человека.
3.2. Иммуногистохимические исследования скелетной мышцы человека.
3.2.1. Анализ распределения дистрофина в скелетной мышце человека.
3.2.2. Экспрессия аденилатциклазы в скелетной мускулатуре.
3.3. Ультраструктурное исследование скелетной мышцы человека.
3.4. Обсуждение.
Введение диссертации по теме "Гистология, цитология, эмбриология", Бубнова, Елена Николаевна, автореферат
Актуальность темы. Одной из наиболее сложных в теоретической и практической невропатологии является проблема наследственных нервно-мышечных заболеваний. Относительно высокая частота этих заболеваний, тяжелая инвалидизация при большинстве из них, поражение в детском или цветущем возрасте делают их весьма актуальными (Гехт Б.М. и Ильина H.A., 1982; Bethlem J., Knobbout С., 1987; Dubowitz V., 1991; McMillan J., Harper P., 1994).
Нервно-мышечная патология полиморфна по своим проявлениям, в связи с этим возникают трудности в распознавании наследственных форм нервно-мышечных болезней и их дифференциальной диагностики. (Goebel Н., Halbig L., 1990; Emery А., 1991; Waclawik А., 1993; Лобзин B.C. и др., 1998; Темин П.А., Никанорова М.Ю., 1998). Большое значение для диагностики наследственных нервно-мышечных заболеваний имеют патоморфологические исследования мышечной ткани. Как правило, различные нервно-мышечные болезни характеризуются индивидуальной патоморфологической картиной, хотя отдельные признаки в различных сочетаниях и с разной степенью выраженности могут проявляться при различных заболеваниях (Rice С. et al, 1988; Bushby К., 1994; Noguchi S. et al., 1995; Anderson L. et al., 1996).
Большое значение в выяснении патогенеза и диагностики болезней имеют ультраструктурные исследования. Описаны характерные изменения ультраструктуры мышечных волокон при ряде нервно-мышечных заболеваний (Engel F., Lambert Е., 1977; Watkins S. et al., 1988; Samitt С., Bonilla E., 1990; Tritschler H. et al., 1992; Ozawa E. et al., 1995), вместе с тем многие положения остаются маловыясненными или противоречивыми. В настоящее время в анализе нервно-мышечной патологии преобладают исследования, направленные на выяснения распределения белков цитоскелета и основных внутриклеточных сигнальных путей (Ткачук В.А. и др., 1976; Ervasti J. et al. 1990; Matsumura К., Campbell К., 1994; Lim L. et al., 1995; Worton R., 1995; Brown R., DPhil J., 1997). Среди многих регуляторных систем мышечного волокна особое значение имеет дистрофии - ассоциирующий белковый комплекс и аденилатциклазная система.
Применение морфологических методов исследований биопсийного материала скелетных мышц у больных с нервно-мышечной патологией позволяет провести дифференциальный диагноз между отдельными формами прогрессирующих мышечных дистрофий и денервационных амиотрофий, а также диагностировать отдельные формы структурных миопатий.
Для установления точного диагноза, выработки методов лечения и профилактики необходимо понять молекулярные механизмы возникновения нервно-мышечных заболеваний. В связи с этим значительный интерес представляет изучение экспрессии некоторых белков и компонентов сигнальных путей в скелетной мышце человека, дефект которых может привести к патологии.
Цель и задачи исследования. Выяснить общие закономерности структурной перестройки скелетной мышцы человека при некоторых видах мышечной патологии.
В задачи исследования входило:
1. Получение и цитохимический анализ первичных культур миобластов человека.
2. Иммуногистохимический анализ распределения белка дистрофина и экспрессии аденилатциклазы в скелетной мышце человека.
3. Электроно-микроскопическое исследование биопсийного материала скелетной мышцы человека при некоторых видах мышечной патологии.
Научная новизна работы. В результате выполненных исследований были получены следующие основные новые данные:
- установлено, что цитохимический анализ на легкую цепь миозина и щелочную фосфатазу позволяет дифференцировать миобласты от фибробластов в культуре клеток; на стадии миотубул реакция на щелочную фосфатазу резко снижается;
- с помощью оригинальных антител показана субсарколеммальная локализации белка дистрофина в мышечных волокнах человека;
- установлено, что в скелетных мышцах человека и белой крысы определяется высокий уровень экспрессии 9-ой изоформы аденилатциклазы; фермент отсутствует в пресинаптических окончаниях двигательных пластинок нервно-мышечных соединений;
- установлено, что различные нервно-мышечные болезни характеризуются индивидуальной патоморфологической картиной на ультраструктурном уровне, определяющейся ведущим проявлением патологии: изменением митохондрий, перестройкой миофибриллярного аппарата, накоплением продуктов нарушенного метаболизма или сарколеммальной организации;
- к общим проявлениям ультраструктурных нарушений при миопатиях можно отнести изменения сарколеммы мышечных волокон в виде ее «отслоения» с формированиям аркадных структур, накопление или исчезновение гликогена с одновременным изменением содержания липидных капель, расширение канальцев саркоплазматического ретикулума, умеренная дезорганизация миофибриллярного аппарата.
Научно-практическая значимость работы. Полученные в работе данные о структурных изменениях в скелетной мышце человека при некоторых видах нервно-мышечной заболеваний имеют большое значение для проведения дифференциального диагноза между отдельными формами мышечной патологии. Для понимания молекулярных механизмов возникновения нервно-мышечных заболеваний практическую ценность имеют иммуногистохимические методы исследования, с помощью которых можно провести анализ белков, дефекты которых являются причиной той или иной патологии.
Результаты исследований могут быть использованы в неврологической практике с целью уточнения диагноза, определения методов лечения и профилактики новых случаев установленного заболевания в семье.
Полученные данные могут также быть использованы в учебных курсах по гистологии и невропатологии.
Основные положения, выносимые на защиту.
1. В первичных культурах клеток, полученной из скелетной мышцы человека, миобласты характеризуются положительной иммунореакцией на легкую цепь миозина и высокой активностью щелочной фосфатазы.
2. В скелетных мышцах человека и крысы определяется высокий уровень экспрессии 9-ой изоформы аденилатциклазы, фермент отсутствует в терминальных отделах аксонов, образующих двигательные пластинки.
3. Ультраструктура скелетной мышцы человека при некоторых видах мышечной патологии имеет как характерные изменения, соответствующие определенным нозологическим формам, так и ряд общих неспецифических проявлений.
Апробация работы. Материалы работы докладывались на межлабораторных научных семинарах в Медико-генетическом научном центре РАМН (г. Москва, 1996-1998), на Огаревских чтениях 7
Мордовского госуниверситета им. Н.П. Огарева (г. Саранск, 1998-1999), конференции молодых ученных Мордовского госуниверситета им. Н.П. Огарева (г. Саранск, 1999), на 12-ых научных чтениях памяти академика H.H. Бурденко (г. Пенза, 2000).
Публикации. Основные результаты диссертации изложены в 11 печатных работах, опубликованных в научных журналах, сборниках трудов всероссийских и региональных съездов и конференций.
Структура и объем диссертации.
Заключение диссертационного исследования на тему "Ультраструктурное и иммунногистохимическое исследование скелетной мускулатуры человека в норме и при некоторых видах нервно-мышечной патологии"
ВЫВОДЫ
1. Получены достаточно стабильные клеточные линии миобластов из образцов мышечной ткани человека. Исследование иммуногистохи-мическим методом с антителами к легкой цепи миозина показало, что часть клеток давала положительную реакцию и отличалась высокой активностью щелочной фосфатазы. При длительном культивировании (16 суток) устойчивые культуры были способны образовывать многоядерные структуры (от 2 до 15 ядер) - миотубулы. Эти многоядерные мышечные волокна отличались иммунореакцией на легкую цепь миозина и низкой активностью щелочной фосфатазы.
2. 9-ая изоформа аденилатциклазы и кальцинейрин интенсивно экспрессируются в скелетных мышцах человека и белой крысы. Продукт реакции на 9-ую изоформу аденилатциклазы преимущественно локализовался в сарколемме и внутриклеточных мембранах саркоплазматиче-ской сети, а так же ядерной оболочки.
3. Терминальные пресинаптические отделы аксонов в нервно-мышечных двигательных пластинках не содержат 9-ую изоформу аденилатциклазы, но экспрессируют кальцинейрин.
4. Ультраструктурное исследование биопсийного материала скелетной мышцы человека, при некоторых видах нервно-мышечной патологии показало, наличие как типичных изменений, характерных для определенных нозологических форм - перестройка митохондрий, аномалии саркоплазматических мембран, в том числе и сарколеммы, нарушения регулярного расположения миофибрилл и миофиламентов, так и общих нарушений ультраструктуры, в виде расширения канальцев сар-коплазматической сети, скопления митохондрий в периферических отделах мышечных волокон, изменений в содержании гранул гликогена и
115 липидов, умеренные нарушения в структуре миофибриллярного аппарата.
5. Наиболее общими нарушениями при всех изученных формах нервно-мышечной патологии следует признать нарушения субсарко-леммальных компонентов цитоскелета, ответственных за правильную упаковку миофиламентов.
ЗАКЛЮЧЕНИЕ
Исследования в области нервно-мышечной патологии представляют актуальную проблему современной нейрогистологии и нейробио-логии. Наследственные нервно-мышечные заболевания являются наиболее многочисленной группой среди всех заболеваний нервной системы. К ним относятся различные виды миопатий, невральные и спинальные амиотрофии, миастения, миотония и периодический паралич. Нервно-мышечные заболевания - это особая группа болезней, которая характеризуется чрезвычайным разнообразием нозологических форм, выраженной генетической гетерогенностью и клиническим полиморфизмом, что затрудняет диагностику и медико-генетическое консультирование. Наследственные нервно-мышечные заболевания являются одной из частых причин детской инвалидности, порождая целый комплекс медицинских и социальных проблем. За последние десятилетие достигнут, значительный прогресс в изучении нервно-мышечных заболеваний, тем не менее, проблема патогенеза, диагностики методов лечения и профилактики мышечной патологии остается актуальной.
Познание патогенеза и патоморфоза мышечных заболеваний невозможно без выяснения молекулярных механизмов, лежащих в основе как деятельности собственно мышечного волокна, так и в обеспечении скоординированной взаимозависимой организации нервно-мышечного соединения. Прогресс в изучении рецепторного аппарата и внутриклеточных сигнальных путей, инициирующихся различными рецепторами и связанными с ними ферментными системами вторичных посредников, позволяет значительно расширить представления о нормальной работе мышцы и ее изменениях при различной патологии.
В результате исследования биопсийного материала скелетной мускулатуры человека были выяснены общие закономерности структурной перестройки скелетной мышцы при некоторых видах мышечной патологии.
С помощью электронно-микроскопического исследования био-псийного материала скелетной мышцы человека было показано, что различные нервно-мышечные болезни характеризуются индивидуальной патоморфологической картиной на ультраструктурном уровне. К таким заболеваниям относятся митохондриальная миопатия и прогессирующие мышечные дистрофии Дюшенна и Беккера.
Митохондриальная миопатия проявлялась изменением митохондрий. Они имели большие размеры и неправильную организацию внутренней мембраны. В органеллах обнаруживалось появление крупных цитоплазматических осмиофильных влючений, в которых находились липидные массы и вакуоли с электронно-прозрачным содержимым.
При ультраструктурном исследовании биоптата скелетной мышцы больных миодистрофиями Дюшенна и Беккера наблюдалось, прежде всего, изменение сарколлемы мышечного волокна в виде ее «отслоения» с формированием аркадных структур. Такие изменения сарколлемы связаны с нарушением структуры белка дистрофина, который отвечает за стабилизацию мембраны мышечной клетки. Иммуногистохимически с помощью оригинальных антител нами было показана субсарколлемаль-ная локализация дистрофина.
При других изученных нозологических формах мышечной патологии характерные изменения мышечных волокон в изученном материале не были установлены. Описанные выше при дистрофии Дюшенна и Беккера нарушения изредка встречались.
Для них были характерны общие нарушения ультраструктуры в виде расширения канальцев саркоплазматической сети, скопления митохондрий в периферических отделах мышечных волокон, изменений в
113 содержании гранул гликогена и липидов, умеренные нарушения в структуре миофибриллярного аппарата.
При исследовании биопсийного материала скелетных мышц больных кардиомиопатиями, выраженных нарушений мышечных волокон не обнаружено.
Ультраструктурное и иммуногистохимическое исследование биопсийного материала скелетных мышц больных расширяет представления о молекулярных механизмах мышечной патологии. Они могут быть использованы для изучения патогенеза, дифференциальной диагностики и выработки методов лечения нервно-мышечных заболеваний.
Одним из перспективных методов терапии мышечной патологии, которая проявляется в выраженных дегенеративных изменениях мышечных волокон, может являться использование трасплантации миобла-стов. В условиях эксперимента и клиники было показано, что клеточная терапия может быть успешно использована при миодистрофии Дюшенна и Беккера - трансплантированные клетки способны in vivo сливаться с патологически измененными мышечными волокнами и приводить к их регенерации с образованием нормальных мышечных волокон. (Law Р. et al., 1993, 1994).
Список использованной литературы по медицине, диссертация 2000 года, Бубнова, Елена Николаевна
1. Валиуллин В.В. Нейротрофический контроль и гуморальная регуляция пластичности скелетной мышцы. Автореф. дисс. док. биол. наук. Саранск. 1996. 46 с.
2. Вельтищев Ю.Е. и Темин П.А. Митохондриальные болезни. // В кн.: Наследственные болезни нервной системы. М.: Медицина. 1998. С. 346-472.
3. Волков Е.М. и Полетаев Г.И. Нейротрофический контроль функциональных свойств поверхностной мембраны мышечного волокна. // В кн.: Механизмы нейрональной регуляции мышечной функции. Л.: Наука. 1988.1. С. 5-26.
4. Гехт Б.М. Роль нарушений нервной трофики в механизмах формирования нервно-мышечных заболеваний. // В кн.: Нервный контроль структурно-функциональной организации скелетных мышц. Л.: Наука. 1980.1. С. 119-141.
5. Гехт Б.М., Ильина И.А. Нервно-мышечные болезни. // М.: Медицина. 1982. 352 с.
6. Гилберт С. Биология развития. // М.: Мир. 1993. Т. 1. 228 с.
7. Гранит Р. Основы регуляции движения. // М.: Мир. 1973. 330 с.
8. Гринио Л.П. и Агафонов Б.В. Миопатии. //М.: Медицина. 1997.216 с.
9. Гурфинкель B.C., Левик Ю.С. Скелетная мышца: структура и функция. // М.: Наука. 1985. 132 с.
10. Данилов Р.К. Гистогенетические основы нервно-мышечных взаимоотношений. //СПб. 1996.
11. Данилов Р.К., Одинцова И.А., Найденова Ю.Г. Регенерация скелетной мышечной ткани после огнестрельного повреждения. // Морфология. 1996. Т. 110. №5. С. 86-90.
12. Карлсон Б. Основы эмбриологии по Пэттену. // М.: Мир. 1983. Т.1. 355 с.
13. Колесников JI.JI., Никитюк Б. А., Этинген Л. Э. Движение, ты прекрасно! //Москва, 1993. 183 с.
14. Лобзин B.C., Сайкова Л.А., Шиман А.Г. Нервно-мышечные болезни. // С-П.: «Гиппократ». 1998. 224 с.
15. Лойд 3., Госсрау Р., Шиблер Т. Гистохимия ферментов. // Лабораторные методы. М. 1982.
16. Мавринская Л.Ф., Резвяков Н.П., Экстрафузальные мышечные волокна, их типы и биологическая характеристика. // Арх. анатомии, гистологии и эмбриологии. 1978. № 11. С. 23-40.
17. Митин К.С., Секамова С.Н., Соколова H.A. Ультраструктура скелетных мышц человека. // Арх. анатомии, гистологии и эмбриологии. 1973. Т.64. № 2. С.13-19.
18. Наследов Г.А. Нейротрофический контроль функционирования электромеханической связи в скелетных мышечных волокнах. // В кн.: Механизмы нейрональной регуляции мышечной функции. Л.: Наука. 1988.1. С. 42-52.
19. Соловьев В.А., Слюсарь H.H., Шинкаренко Т.Б. Содержание фосфои-нозитидов в биологических мышечных волокон различных типов. // Морфология. 1998. Т.114. № 4. С. 69-72.
20. Страхова О.С. Поражение сердца при наследственных нервно-мышечных заболеваниях. // В кн.: Актуальные вопросы кардиологии детского возраста. М.: ОА «Астра 7». 1997. С. 83 - 96.
21. Студитский А.Н. Механизм сокращения мышц. // М.: Наука. 1979. 320 с.
22. Темин П.А., Белозеров М.Ю., Никанорова М.Ю., Страхова О.С. Псевдогипертрофическая прогрессирующая мышечная дистрофия Дюшенна. // Росс. вест, перинатологии и педиатрии. 1997. № 1. С. 45-53.
23. Темин П.А., Белозеров М.Ю., Никанорова М.Ю., Страхова О.С. Псевдогипертрофическая прогрессирующая мышечная дистрофия Беккера. // Росс. вест, перинатологии и педиатрии. 1997. № 5. С.27-32.
24. Темин П.А., Никанорова М.Ю. Наследственные болезни нервно-мышечой системы. // В кн.: Наследственные болезни нервной системы. М.: Ме-цина. 1998. С. 192-346.
25. Терехов С.М., Гринберг К.Н., Черников В.Г. и др. // Бюлл. эксп. биол. и мед. 1984. № 12. С. 710-712.
26. Ткачук В.А., и др. // Биохимия. 1976.
27. Тур А.Ф. Пропедевтика детских болезней. // Л.: Медицина. 1967. 137 с.
28. Улумбеков Э.Г. и Резвяков Н.П. Нейротрофический контроль фазных мышечных волокон. //В кн.: Нервный контроль структурно-функциональной организации скелетных мышц. Л.: Наука. 1980. С. 84-104.
29. Фримель X. Иммунологические методы. // М.: Мир. 1986. 237 с.
30. Фултон А. Цитоскелет. Архитектура и хореография клетки. // М.: Мир. 1987.234 с.
31. Хорошков Ю.А. и Одинцова H.A. Соединительнотканные структуры скелетной мышцы человека и их значение в биомеханике этого органа. // Арх. анатомии. 1988. Т. 95., вып. 12. С. 41-48.
32. Хорошков Ю.А. и Одинцова H.A. Структурно-функциональная организация цитоскелета мионов и соединительнотканного каркаса поперечнополосатой мышцы человека. // Морфология. 1992. Т.102. № 4. С. 82-95.
33. Цховребова Л.А. Структура и белковый состав Z-линий. // В кн: Структура и функция белков сократительных систем. Л.: Наука. 1987. С. 132-147.
34. Шишкин С.С. Наследственные нервно-мышечные болезни. // М. 1997. 130 с.
35. Ямщиков Н.В. Сравнительная характеристика гистогенеза скелетной и сердечной мышечной тканей // В кн.: Межтканевые взаимодействия в процессах развития и восстановления. Труды Куйбышевского мед. ин-та. Куйбышев. 1973. С. 59-66.
36. Anderson M.S., Kunkel L.N. The molecular and biochemical basis of Duchenne muscular dustrophy. // Trends Biochem.Sci. 1997. V. 17. P. 289-292.
37. Antoni F.A., Simpson J., Paterson J.M., Sosunov A.A. Adenylyl cyclase IX (AC9): a major Ca2+/ calcineurin inhibited cAMP-generating enzyme in thebrain. Immunophilins in the brain. // Sci. Symp. Kiel. 1999. P. 2.
38. Arahata K., Hoffman E.O., Kunkel L.M. et al. Dystrophin diagnosis. Comparison of dystrormalities by immunofluorescence and immunoblot analyses. // Proc. Natl. Acad. USA. 1989. V. 86. P. 7154-7158.
39. Asmussen G., Marechal G. Maximal shortening velocities isomyosins and fibre types in soleus muscle of mice, rats and guineapigs. // J. Physiol. 1989. V. 416. P. 245-254.
40. Beggs A.H., Hoffman E.P., Kunkel L.M. Additional dystrophin fragment in Becker muscular dystrophy may result from proteolytic cleavage at deletion junctions.// Am.J.Med.Genet. 1992. V. 44.P. 378-381.
41. Ben Hamida M., Fardeau M., Attia N. Severe childhood muscular dystrophy affecting both sexes and frequent in Tunisia. // Muscle Nerve. 1980. V. 6.1. P. 469-480.
42. Bergoffen J.A., Trofatter J., Pericak-Vance M.A. et al. Linkage localization of X-linked Charcot- Maria-Tooth disease. // Amer. J. Hum. Genet. 1993. V. 52. N4. P. 312-318.
43. Bethlem J., Knobbout C. Neuromuscular diseases. // Oxford New York - To kyo. 1987.
44. BonillaE., Samitt C.E., Miranda A.F., Hays A.P., Salviati G., DiMauro S., Kunkel L.M. et al. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. //Cell. 1988. V. 54. P. 447-452.
45. Boyd Y., Buckle V J. Cytogenetic heterogeneity of translocations associated with Duchenne muscular dystrophy. // Clin.Genet. 1986. V. 29. P. 108-115.
46. Bretsher A., Vanderkerchow S. and Weber K. Actinis from chicken skeletal muscle and immunological differable. // J. Biochem. 1979. V. 100. P. 237-243.
47. Broke M. H., Kaiser K.K. Muscle fiber types; how many and what kind? // Arch Neurol. 1970. V. 23. N 4. P. 369-379.
48. Brown R.H., DPhil J. Dystrophin-associated proteins and the muscular dystrophies. // Annu. Rev.Med. 1997. V. 48. P. 457-466.
49. Bulman D.E., Murphy E.G., Zubrzycka-Gaarn E.E., Worton R.G., Ray P.N. Differentiation of Duchenne and Becker muscular dystrophy phenotypes with amino- and carboxy-terminal antisera specific for dystrophy. // Am. J. Hum. Genet. 1991. V. 48. P. 295-304.
50. Burghes A.H.M., Logan C., Hu X., Belfall B., Worton R., Ray P.N. Isolation of a cDNA clone from the region of an X:21 translocation that breaks within the Duchenne/Becker muscular dystrophy gene. // Nature. 1987. V. 328.1. P. 434-436.
51. Burmeister M., Lehrach H. Long-range restriction map around the Duchenne muscular dystrophy gene. // Nature. 1986. V. 324. P. 582-585.
52. Bushby K.M.D. Limb-girdle muscular dystrophy. In diagnostic criteria for neuromuscular disorders. A.E.H.Emery, ed. (Baarn, The Netherlands: ENMC). 1994. P. 25-31.
53. Byers T.J., Husain C.A., Dubreuil R.R., Branton D., Goldstein L.S. Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin. //J.Cell Biol. 1989. V.109. P.1633-1641.
54. Byers T.J., Kunkel L.M., Watkins S.C. The subsellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. // J.Cell Biol. 1991.1. V. 115. P. 411-421.
55. Campbell K.P., Kahl S.D. Association of dystrophin and integral membrane glycoprotein. //Nature. 1989. V. 338. P. 259-262.
56. Carpenter S., Karpati G., Zubrzycka-Gaarn E., Bulman D.E., Hay P.N., Worton R.G. Dystrophin is localised to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. // Muscle Nerve. 1990. V. 13. P. 376-380.
57. Chen Xiufang, Zhang Shenggen, Ren Huimin, Acta. zool. sin. 1989. V.35. N 1.1. P.23-27.
58. Close R.I. Dynamic properties of mammalian skeletal muscles. // Physiol. Rev. 1972. V. 52. P. 129-197.
59. Corrado K., Mills P.L., Chamberlain J.S. Deletion analysis of the dystrophin-actin binding domain. // FEBS Lett. 1994. V. 344. P.255-260.
60. Counter S.A., Helstrand E., Borg E. A histochemical characterization of muscle fiber types in the avian m. Stapedius. // Comp. Biochem. and Physiol. 1987. V. A86.N1.P. 185-187.
61. Cross R.A., Stewart M., Kendrich-Jones J. Structural predictions for the central rod domain od dystrophin. // FEBS Lett. 1990. V. 262. P. 87-92.
62. David J.D., See W.M. Fusion of chink embryo skeletal myoblasts: Role of calcium influx preseding membrane union. // Dev. Biol. 1981. V. 82. P. 297-307.
63. Davis H., Bressler B.H., Jasch I.G. Myotrophic effect on denervated fast-twitch muscles of mise correlation of physiologic biochemical and morphologic findings. // Exp. Neurol. 1988. V. 99. N 2. P. 474-489.
64. Dimario J.X., Fernyak S.E., Stockdale F.E. Myoblast transferred to the limbs of embryos to are committed to specific fibre fates. // Nature. 1993. V. 362. P. 165-167.
65. Di Mauro S., Bonilla E., Zeviani M. et al. Mitochondrial encephalomyopaties. //Arch. Neurol. 1993. V. 50. P. 1197-1208.
66. Di Mauro S., Lombes A., Nakase H. et al. Cytochrome C oxidase deficiency. // Ped. Res. 1990. V. 28. P. 536-541.
67. Dubowitz V. and Pears A.C.E. Reciprocal relationship of phosphorylase and oxidative enzyme in skeletal muscle. //Nature. 1985. V. 185. P. 701-702.
68. Dubowitz V. Meuromuscular disorders: gene location // J. Neuromusc. Disord. 1991. V.I.H.I.P. 75 -76.
69. Edman K.A.P., Reggianic C., Schiaffino S., Kronnie G. Maximum velocity of shortening retated to myosin isoform composition in frog skeleal myosin muscle fibers. // J. Physiol. (Gr. Brit.). 1988. V. 395. P. 679-694.
70. Emery A. Population frequencies of inherited neuromuscular diseases // J. Neu romusc. Disord. 1991. V. 1. N 1. P. 19-29.
71. Emery A.E.H. Population frequencies of inherited neuromuscular diseases: a world survey. //Neuromusc.Disord. 1991. V. 1. P. 19-29.
72. Emery A.E.H. Duchenne muscular dystrophy. 2nd.Ed.Oxford University Press, Oxford. 1993.
73. Engel A. G., Lambert E.H., Mulder D. M. et. al. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. // Ann Neurol. 1977. V.l. P. 315-320.
74. Ervasti J.M., Campbell K.P. Dystrophin and the membrane skeleton. // Curr. Opin. Cell Biol. 1993. V. 5. P. 82-87.
75. Ervasti J.M., Ohlendieck K., Kahl S.D., Gaver M.G., Campbell K.P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. //Nature. 1990. V. 345. P. 315-319.
76. Engel A., Lambert E., Gomez M.: A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcho line release. //Ann Neurol. 1977. V. 1. P. 315-322.
77. Eto K., Watanabe T., Ida M. et al. An adult case of congenital myopathy- co existence of nemaline rods and core-like-structures. // Rinsho-Shinkeigaku. 1994. V. 34.N1.P. 43-47.
78. Fassati A., Murphy S., Dickson G. Gene therapy of Duchenne muscular dustro-phy. // Adv. in Genet. 1997. V. 35. P. 117-153.
79. Franco A., Lansman J.B. Calcium entry through stretch-inactivated ion channels in mdx myotubes. // Nature. 1990. V. 344. P. 670-673.
80. Galjaard H. Biochemical diagnosis of genetic disease. II Experientia. 1986. V. 42. P.1075-1085.
81. Gauthier G. F. On the relationship of ultrastructural and cytochemi cal features to color in mammalian skeletal muscle. // Z. Zellfosch. 1969. V. 95. N 3.1. P. 468-482.
82. Goebel H., Halbig L. Congenital «non-progressive» myopathies classifica tion and morpholofic characteristics // J. Neurol. Sci. 1990. Sept. V. 98. (Suppl.). P. 99.
83. Gorza L. ^identification of a novel type 2 fiber population in mammalian ske-tal muscle by combined use of histochemical myosin AT<D ase and antimyo-sin monoclonal antibodies. // J. Histochem and Cytochem. 1990. V. 38. N 2. P. 257-265.
84. Grimm T. Genetic counselling in Becker X- linked muscular dystrophy. Theo retical considerations. // Am. J Med Genet. 1984. N 18. P. 713.
85. Hammond R.G.J. Protein sequence of DMD gene is related to actin-binding domain of-actinin. // Cell. 1987. V. 51. P. 1.
86. Heinicke E., Davis H. Effect of denervation and injected nerve extract an solu ble proteins of extenson digitorum longus muscles of rat. // Exp. Neurol. 1987. V. 97. N 3. P. 454-464.
87. Hoffman E.P. Human molecular genetics and the elucidation of the primary biochemical defect Duchenne muscular dystrophy. // Cell Motil. and Cytoske-letion. 1989. V. 14. N 1. P.163-168.
88. Hoffman E.P., Beggs A.H., Kunkel L.M., Angelini C. Cross- reactive protein in Duchenne muscle. // Lancet. 1989. N 8673. P. 1211-1212. A
89. Hoffman E.P., Knudson C.M., Campbell K.P., Kunkel L.M. Subcellular fractionation of dystrophin to the triads of skeletal muscle. // Nature. 1987. V. 330. P. 754-757.
90. Hoffman E.P., Kunkel L.M. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. // Neuron. 1989. V. 2. P. 1019-1029.
91. Hoffman E.P., Kunkel L.M., Angelini C., Clarke A., Johnson M., Harris J.B. Improved diagnosis of Becker muscular dystrophy via dystrophin testing. // Neurology. 1989. V. 39. P. 1011-1017. E
92. Hoffman W.W. Neurotrophism another approach. // Clin. Aspect Sens. Motor Intergration. Berlin e.a. 1987. P.l 19-134.
93. Hudlicka O. Resting and post contraction blood flow in slow and fast muscles of the chick during development. // Microvasc. Res. 1969. V. 1. N 4.1. P. 390-402.
94. Hugh G. and Hoh J.F.Y. Immunocytochemical analysis of myosin isoenzymes in denervated rat fast and slow muscles. // Proc. Austral. Physiol, and Pharmacol. Soc. 1987. V. 18. N 1. P. 45.
95. IkeyaK., Saito K., Tanaka H., Hagiwara Y., Goshida M. et al. Molecular genetic and immunological analysis of dystrophin of a young patient with X-lin-ked muscular dystrophy. // Am. J. of Med. Gen. 1992. V. 43. P. 580-587.
96. Jukubiec-Puka, Kordovska I., Catani C., Curraro U. Miosin heavy chain inso-form composition in striated muscle after denervation and self-reinnervation. // Eur. J. Biochem. 1990. V. 193. N 3. P. 623-628.
97. Kalderon N., Gilula N.B. Membranae event involved in myoblast fusion. // J. Cell Biol. 1979. V. 81. P. 411-425.
98. Kaufman S J., Foster R.F. Remodeling of the myoblast membrane accompanies development. // Dev. Biol. 1985. V. 110. P. 1-14.
99. Kelso T.B., Hodgson D.R., Vissher A.R., Gollnick P.D. Some properties of different skeletal muscle fiber type: comparison of reference bases. // J. Appl. Physiol. 1987. V. 62. N 4. P. 1436.
100. Khurana T., Hoffman E., Kunkel L. Identification of a chromosome 6-encod-ed dystrophin-related protein. // J.Biol.Chem. 1990. V. 265. P. 16717-16720.
101. Kingston H.M., Harper P.S., Pearson P.L., Davies K.E., Williamson R., Page D. Localization of the gene for Becker muscular dystrophy. // Lancet.1983. V. l.P. 1200.
102. Knudsen K.A. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glicoproteins. // J. Cell Biol. 1985. V. 101. P. 891-897.
103. Knudson C.M., Hoffmen E.P., Kahl S.D., Kunkel L.M., Campbell K.P. Characterization of the dystrophin in skeletal muscle triads. // J.Biol.Chem. 1988.
104. Koenig M., Kunkel L.M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. // J.Biol. Chem. 1990. V. 265. P. 4560-4566.
105. Koenig M., Monaco A.P., Kunkel L.M. The complete sequence of dystrophin predict a rod-shaped cytoskeletal protein. // Cell. 1988. V. 53.1. P. 219-228.
106. Krenacs T., Molnar E., Dobo E., Dux L. Fiber typing using sarcoplasmic reticulum Ca-ATO-ase and myoglobin immunohistochemistry in rat gastrocne-mus muscle. // Histochem. J. 1989. V. 21. N 3. P. 145-155.
107. Kunkel L.M., Beggs A.H., Hoffman E.P. Molecular genetics of Duchenne and Becker muscular dystrophy: emphasis on improved diagnosis. // Clin. Chem. 1989. V. 35. N 7. P. 821-824.
108. Lannergren J. Relation between myosin isoenzymes and contractile properties in skeletal muscle fibers. // Acta physiol. scand. 1985. V. 124. Suppl. 1.1. N 542. P. 207.
109. Law P.K. Myoblast transfer: Gene Therapy for Muscula Dystrophy. // CRC Press. 1994. P. 164.
110. Law P.K., Goodwin T.G., Frang Q. et al. Cell Transplantation. 1993. V. 2. P. 485-505.
111. Levine B.A., Moir A.J.G., Patchell V.B., Perry S.V. The interaction of actin with dystrophin. // FEBS Lett. 1990. V. 263. P. 159-162.
112. Lidov H.G.W., Byers T.J., Kunkel L.M. The distribution of dystrophin in the murine central nervous system: An immunocytochemical study. // Neuroscience. 1993. V. 54. P. 167-187.
113. Lim L., Ducios F., Brous O. et al. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4ql2. // Nature Genet. 1995.1. V. 11. P. 257-265.
114. Love D.R., Davies K.E. Duchenne muscular dystrophy: the gene and the protein. // Mol. Biol, and Med. 1989. V. 6. N 1. P. 7-17.
115. Love D.R., Hill D.F., Dickson G., Spurr N.K., Byth B.C., Marsden R.F., Walsh F.S., Edwards Y.H., Davies K.E. An autosomal transcript in skeletal muscle with homology to dystrophin. // Nature. 1989. V. 339. P. 55-58.
116. Maeda M. et al. Cardiac dystrophin abnormalities in Becker muscular dystrophy assessed by endomyocardial biopsy. // American-Heart-Journal. 1995. V. 129/4. P. 702-707.
117. Maruyama K., Muzukami F.and Ohashi K. Connectin and elastic protein of muscle. // J. Biochem. 1977. V. 82. P. 339-345.
118. Maruyama K., Natori R. and Nonomura Y. New elastic protein from muscle. // Nature. 1976. V. 262. P. 58-60.
119. Matsumura K., Campbell K.P. Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. // Muscle Nerve. 1994. V. 17. P. 2-15.
120. McMillan J.C., Harper P.S. Clinical genetic in neurological disease. // J. Neurol. Neurosung. Psychiatr. 1994. V. 57. N 1. P. 7-15.
121. Menke A., Jockusch H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. // Nature. 1991. V. 349. P. 69-71.
122. Meola G., Velicogna M., Brigato C.,Pizsul S., Rotondo G., Scarlato G. Growth and differentiation of myogenic clones from adult human muscle cell cultures. // Europ. J.Basic Appl. Histochem. 1991. V. 35. N 3. P. 219-231.
123. Mokri B., Engel A. Duchene dystrophy: Electron microscopic findings pointing to basic or early abnormality in the plasma membrane of the muscle fiber.
124. Neurology. 1975. V. 25. P. 1111-1118.
125. Monaco A.P., Kunkel L.M. A giant locus for the Duchenne and Becker muscular dystrophy gene. // TIG. 1987. V. 3. P. 33-37.
126. Nammerof M. and Munar E. Inhibition of celluar differentiation by phospho-lipase C. II11 Separation of fusion and recognition among myogeniccel. Dev. Biol. 1976. V. 49. P. 410-418.
127. Noguchi S., McNally E., Othmane K. et al. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. // Science. 1995. V. 270. P. 819-822.
128. Ohlendieck K., Ervasti J.M., Snook J.B., Campbell K.P. Dystrophin-glyco-protein complex is highly enriched in isolated skeletal muscle sarcolemma. // J.Cell Biol. 1991. V. 112. P. 135-148.
129. Ohlendieck K., Campbell K.P. Dystrophin constitutes 5 % membrane cyto-skeleton in skeletal muscle. // FEBS Lett. 1991. V. 283. P. 230-234.
130. Ozawa E., Yoshida M., Suzuki A. et al. Dystrophin-associated proteins in muscular dystrophy. //Hum.Mol.Genet. 1995. V. 4. P. 1711-1716.
131. Pinsent C., Montarras D. // Cell Biologi. A laboratory Handbook. V. 1. Lond. 1994. P. 199-206.
132. Pinsent C., Mulle C., Benoit P. et al. // EMBO J. 1991. V. 10. P. 2411-2418.
133. Petrof B.J., Shrager J.B., Stedman H.H., Kelly A.M., Sweeney H.L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. //Proc.Natl.Acad.Sci.USA. 1993. V. 90. P. 3710-3714.
134. Porter C.A., Dmytrenko G.M., Winkelmann J.C., Block R.J. Dystrophin colo-calized with -spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. // J. Cell Biol. 1992. V. 117. P. 997-1005.
135. Pickard N.A. et al. Systematic membrane defect in the proximal musculardystrophies. // N. Engl. J. Med. 1978. N 1. P. 284-299.
136. Parano E. A clinical study of childhood spinal muscular atrophy in Sicily: a re view of 75 case. // Brain and Development. 1994. V. 16. N 2. P. 96-103.
137. Reiser P.J., Greaser M.L., Moss R.L. Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. // Dev. Biol. 1988, V. 129. N 2.1. P. 400-407.
138. Rice C.L., Cunnigham D.A., Taylor A.W., Paterson D.H. Comparison of the histochemical and contractile properties of human triceps surae. // Europ. J. Appl. Physiol, and Occup. Physiol. 1988. V. 58. N 1-2. P. 165-170.
139. Roberts R.G. Dystrophin, its gene and dystrophinopathies. // Adv.Genet. 1995. V. 33. P. 177-231.
140. Samitt C.E. and Bonilla E. Immunocytochemical study of dystrophin at the myotendinous junction. //Muscle Nerve. 1990. V. 13. P. 493-500.
141. Schmalbruch H. "Rote" muskelfasern. // Z. Zellforsgh. 1971. V. 119. P. 120-146.
142. Staron R.S., Retter D. Correlation between myofibrillar ATP-ase activity and myosin heavy chain composition in rabbit muscle fibers. // Histochemistry. 1986. V. 86. N1. P. 19-23.
143. Sugita H., Arahata K., Koizumi H., Tsukahara T. and Ishiura S. Immunohisto chemical study of dystrophin in Duchenne muscular dystrophy. // J. Pharmacobio- Dyn. 1989. V. 12. P. 5-96.
144. Sunada Y., Campbell K. Dystrophin-glycopritein complex: molecular organization and critical roles in skeletal muscle.//Cur.Opin.Neurol. 1995. V.8. P. 379-384.
145. Talesara C.L., Jasra Pardeep K. Differential response of slow and fast twitch fibers to denervation in young and adult rat EDL muscles. // Indian. J. Exp. Biol. 1985. V. 23. N 5. P. 247-252.
146. Tritschler HJ., Andreetta F., Moraes C.T. et al.: Mitochondrial myopathy ot childhood associated with depletion of mitochondrial DNA. // Neurology. Y. 42. P. 209-218.
147. Turner P.R., Fong P., Denetclaw W.F., Steinhardt G. Increased calcium influx in dystrophic muscle. // J.Cell Biol. 1991. V. 115. P. 1701-1712.
148. Yasin R., Landon D.N. // Histochem. J. 1987. V. 19. N 3. P. 179-183.
149. YamashitaK., Watanable M., Yoshiko T. Creatinkinase isoenzymes in different types of single muscle fibers. // Jap. J. Phisysiol. 1990. V. 40. Suppl. 1. P. 245.
150. Yoshida M., Ozawa E. Glycoprotein cjmplex anchoring dystrophin to sarco-lemma. // J. Biochem. 1990. V. 108. P. 748-752.
151. Yoshinobu O. Effects of denervation and deafferentation on mass and enzyme activity in rat skeletal muscles. // Jap. J. Phisiol. 1987. Y. 39. N 1. P. 21-31.
152. Vainzof M., Passos-Bueno M.R., Canovas M., Moreira E.S., Pavanello R.C., Anderson L.V.B, et al. The sarcoglycan complex in the six autosomal recessive limb-girgle muscular dystrophies. // Hum.Mol.Genet. 1996. V. 5.1. P. 1963-1969.
153. Van Der Laarse W.J., Maslam S., Diegenbach P.C. Relation hip between myoglobin and SDH in mouse soleus and plantaris muscle fibers. // Histochem. J. 1985. V. 17. N l.P. 1-11.
154. Waclawik A, Lindal S., Engel A.: Experimental Lovastation myopathy. // J. Neuropathol Exp Neurol. 1993. V. 52. P. 542-549.
155. Wakayama Y. and Shibuya S. Observations on the muscle plasma membrane associated cytoskeletions of mdx mice by quick-freeze, deep-etch rotary-shadow replica metod. //Acta Neuropathol. 1990. V. 80. P. 618-623.
156. Wakelam M.J.O. The fusion of myoblasts. // Biochem. J. 1985. V. 228. P. 1-12.
157. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle:Review and hypothesis. // In: Cell and Muscle Motil. 1985. New York. London.1. P. 315-369.
158. Watkins S.C., Hoffman E.P., Slayter H.S., Kunkel L.M. Immunoelectron microscopic localization of dystrophin in myofibers. //Nature. 1988. V. 33. P. 863-866.
159. Way M., Pope B., Cross R.A., Kendrick-Jones J., Weeds A.G. Expression of the N-terminal domain of dystrophin in E.coli and demonstration of binding to F-actin. // FEBS Lett. 1992. V. 301. P. 243-245.
160. Weller B., Karpati G., Carpenter S. Dystrophin-deficient mdx muscle fibers are perferentially vulnerable to necrosis induced by experimental lengthening contractions. // J. Neurol. Sci. 1990. V. 100. P. 9-13.
161. Worton R. Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. // Science. 1995. V. 270. P. 755-756.
162. Zatz M., Vianna-Morgante A.M., Campos P., Diament A.J. Translocation (X;6) in a female with Duchenne muscular dystrophy, implications for the localization of the DMD locus. // J.Med.Genet. 1981. V. 18. P. 442-447.
163. Zubrzycka-Gaarn E.E., Bulman D.E., Karpati G., Burghes A.H., Betball B., Hajklamut H., Talbot J. et al. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. // Nature. 1988. V. 33. P. 466-469.