Автореферат и диссертация по медицине (14.00.47) на тему:Клинико-диагностическое значение короткоцепочечных жирных кислот у больных язвенным колитом

ДИССЕРТАЦИЯ
Клинико-диагностическое значение короткоцепочечных жирных кислот у больных язвенным колитом - диссертация, тема по медицине
Косачева, Татьяна Александровна Москва 2006 г.
Ученая степень
кандидата медицинских наук
ВАК РФ
14.00.47
 
 

Оглавление диссертации Косачева, Татьяна Александровна :: 2006 :: Москва

Страница

Принятые сокращения

Введение

Глава 1 Обзор литературы Роль короткоцепочечных жирных кислот в патогенезе и терапии язвенного колита

1.1 Физиологическое значение короткоцепочечных жирных кислот

1.2 Клиническое значение короткоцепочечных жирных кислот при некоторых заболеваниях кишечника

1.3 Короткоцепочечные жирные кислоты при язвенном колите

Глава 2 Характеристика больных и методов исследования

2.1 Характеристика больных

2.2 Методы и объем исследований

Глава 3 Изменение профиля и концентрации короткоцепочечных жирных кислот в фекалиях у больных язвенным колитом в зависимости от распространенности, активности и тяжести заболевания

Глава 4 Уровень короткоцепочечных жирных кислот в фекалиях в фазе индукции и поддержания ремиссии язвенного колита

 
 

Введение диссертации по теме "Гастроэнтэрология", Косачева, Татьяна Александровна, автореферат

Микробное сообщество, заселяющее пищеварительный тракт человека, отличается видовым разнообразием, сложностью инфраструктуры и многофункциональным действием. Особая роль принадлежит короткоцепочечным жирным кислотам (КЖК), продуцируемым анаэробными микроорганизмами и участвующими в энергообеспечении эпителия толстой кишки, регуляции его обновления и дифференцировки, поддержании ионного обмена и целостности эпителиального барьера (Дубинин A.B. с соавт., 1991; Бабин В.Н. с соавт., 1994; Ардатская М.Д. с соавт., 2001; Roediger, 1994; Cummings, 1995: Velazques et al., 1997; Dudeja et al., 2003).

Клинические и экспериментальные исследования дают веские основания считать, что язвенный колит возникает из-за дефицита энергии в слизистой толстой кишки, а именно - нарушенного синтеза, поглощения и утилизации КЖК (Ireland & Jewell, 1990; Shapman et al., 1991; Williams et al., 1992; Hendson et al., 1993; Roediger, 1994). Эта гипотеза послужила отправной точкой для нового направления в терапии язвенного колита, заключающейся попытках преодоления блока окисления КЖК за счет непосредственной их доставки в пораженные отделы кишечника. Эффективность клизм и свечей КЖК в активную фазу язвенного колита уступала действию традиционных противовоспалительных препаратов (Senagore et al., 1992; Scheppach et al., 1992; Vernia et al., 1995; Ratz et al., 1996; Steinhart et al., 1996; Breuer et al., 1997). Однако это не исключало полезности заместительной терапии КЖК у отдельных групп больных с активным заболеванием и, особенно, в периоде ремиссии (Rhodes & Tomas, 2001). Были обнаружены уникальные свойства масляной кислоты, ставящие ее в ряд наиболее перспективных средств для предупреждения реактивации язвенного колита. Это способность ингибировать NFkB (Inan et al., 2000; Lawrence et al., 2001; Luhrs et al., 2001) и снижать численность ТоН-рецепторов на эпителии (Isono et al., 2004). Данные мишени по современных представлениям являются ключевыми в терапии воспалительных заболеваний кишечника. Внимание исследователей сконцентрировалось на регуляции эндогенного синтеза КЖК как метода профилактики обострений. Наиболее живой интерес в этом отношении возбуждают пребиотики — диетические субстанции, способствующие росту и метаболической активности «полезных» кишечных бактерий (Jacobasch et al., 1999; Bird et al., 2000; Sartor, 2004). Эти субстанции повышают концентрацию комменсальных пробиотических бактерий, снижают внутрипросветную рН и повышают продукцию КЖК. В эксперименте и клинике было показано, что пребиотики способны купировать активность воспаления, предупреждать развитие колита (Madsen et al., 1999; Araki et al., 2000; Videla et al., 2001; Fukuda et al., 2002). Более того, в контролируемых исследованиях пребиотики демонстрировали эффективность равноценную месалазину в поддержании ремиссии язвенного колита (Fernandez-Banares et al., 1999; Kanauchi et al., 2003). Конечно, небольшая продолжительность терапии, малочисленные выборки и эффект-плацебо (Ilnyckyi et al., 1997) не позволяют высказать категорическое суждение о роли КЖК в поддерживающем лечении язвенного колита. Однако, учитывая физиологическое значение пребиотиков, идея использования диетических воловокон высказывается многими исследователями (Macfarlane & Cummings, 1999: Rfau & Rombeau, 2000). Требуются дополнительные клинические испытания, оценивающие эффект повышения уровня масляной кислоты для пролонгирования ремиссии.

Различно оцениваются изменения КЖК в фекалиях у больных активным язвенным колитом. По данным одних исследований уровень КЖК снижается пропорционально протяженности и активности заболевания (Breuer et al., 1997), но нередко средние значения не выходят за пределы нормы или оказываются повышенными (Ерошкина Т.Д. с соавт., 1985; Семенова Э.Э., 2002; Ардатская М.Д., 2003; Hallert et al., 2003). Неоднозначно интерпретируется и прогностическая ценность определения КЖК. Низкие значения согласно одним исследователям коррелируют с положительным эффектом противовоспалительной терапии у больных активным язвенным колитом, в других - нет (Steinhart et al., 1994). Более того, низкий уровень метаболизма масляной кислоты в фазе ремиссии язвенного колита рассматривается как предвестник скорого обострения (den Hond et al., 1998).

На основании выше изложенного представляется перспективным изучить клиническое значение исследования профиля КЖК в фекалиях как маркера активности и прогноза язвенного колита, а также возможности профилактики обострений путем регуляции уровня КЖК про- и пребиотиками.

Цель исследования;

Определение роли КЖК в становлении и поддержании ремиссии язвенного колита.

Задачи исследования:

1. Определить экскрецию и профиль КЖК в фекалиях в периоде обострения язвенного колита в зависимости от локализации, протяженности поражения и тяжести атаки.

2. Оценить характер изменений метаболитов кишечной микрофлоры на фоне противовоспалительной терапии в фазе стихания активности язвенного колита и в периоде ремиссии.

3. Установить возможность использования параметров кишечного гомеостаза для прогнозирования эффективности лечения и сроков возникновения обострения.

4. Сравнить динамику экскреции КЖК на фоне профилактического лечения аминосалицилатами, про- и пребиотиками.

Научная новизна:

В результате проведенных исследований установлено, что качественные показатели КЖК характеризуются постоянством, являясь важным параметром кишечного гомеостаза. Уровень КЖК при активном язвенном колите определяется их синтезом в правых отделах ободочной кишки и абсорбцией в пораженных сегментах. Он может быть в пределах нормальных значений или возрастать при дистальном и левостороннем поражении. Для резкого снижения синтеза и экскреции КЖК при тотальном колите необходимо выраженное воспаление в слепой и восходящей кишке с разрушением пристеночного слоя слизи, где обнаруживается основная синтезирующая анаэробная флора.

На фоне противовоспалительного лечения в периоде стихания активности заболевания и в фазе ремиссии наблюдается достоверное повышение уровня КЖК. Таким образом, впервые выявлена важная закономерность, свидетельствующая о том, что повышенный синтез КЖК способствует саногенезу язвенного колита, его репаративной фазе.

Практическая ценность работы:

Впервые подтверждена целесообразность применения пребиотических препаратов (микрокристаллическая целлюлоза, мукофальк) при стихании активности язвенного колита с целью установления и поддержания ремиссии.

Внедрение пребиотиков в поддерживающую терапию больных язвенным колитом позволит сократить объем противовоспалительного лечения и уменьшит побочные явления, связанные с приемом медикаментозных препаратов.

Апробация работы

Результаты работы доложены и обсуждены на 7-ом Славяно-Балтийском форуме в г.Санкт-Петербурге, 6-ом Съезде НОГ России в г.Москве. По материалам исследования опубликовано 5 научных работ.

Объем и структура диссертации

Диссертация состоит из введения, обзора литературы, описания материала и методов исследования, изложения результатов собственных исследований, заключения.

 
 

Заключение диссертационного исследования на тему "Клинико-диагностическое значение короткоцепочечных жирных кислот у больных язвенным колитом"

ВЫВОДЫ:

1. У больных язвенным колитом отмечаются изменения количества экскретируемых короткоцепочечных жирных кислот, при стабильных соотношениях их в спектре, что является одним из важных параметров кишечного гомеостаза.

2. Экскреция короткоцепочечных жирных кислот в фекалиях у больных язвенным колитом возрастает по мере увеличения протяженности и активности воспалительного процесса. Истинный дефицит короткоцепочечных жирных кислот отмечается при тяжелом тотальном колите из-за приостановки их синтеза.

3. Усиленная продукция короткоцепочечных жирных кислот в периоде становления и поддержания ремиссии способствует саногенезу язвенного колита.

4. Абсолютные концентрации короткоцепочечных жирных кислот отражают тяжесть заболевания и, наряду с другими показателями, могут использоваться в качестве маркера прогноза ответа на противовоспалительное лечение.

5. Для интенсификации репаративно-восстановительных процессов у больных язвенным колитом могут применяться пребиотические препараты, способствующие повышенной продукции бактериальных метаболитов.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

1. Повышенный синтез и экскреция КЖК с фекалиями у больных язвенным колитом при низком клиническом индексе активности отражает начало восстановительно-репаративных процессов в кишечнике.

2. Как показатель, отражающий тяжесть язвенного колита, уровень КЖК может использоваться для прогнозирования ответа на проводимую противовоспалительную терапию.

3. Для усиления синтеза КЖК при стихании активности язвенного колита следует применять пребиотики - метилцеллюлозу и мукофальк с целью установления и поддержания ремиссии. Прием препаратов бифидумбактерий без пребиотиков, согласно нашим данным, не способствует росту количества КЖК.

 
 

Список использованной литературы по медицине, диссертация 2006 года, Косачева, Татьяна Александровна

1. Акийзин Э.С., Булыгина В.В. Новые возможности экспресс-диагностики возбудителей гнойной инфекции и быстрой оценки эффективности лечения. Ж. Клинич.лаборат. диагностики; 1999; 6: 4547.

2. Ардатская М.Д. Клиническое значение короткоцепочечных жирных кислот при патологии желудочно-кишечного тракта. Дисс.докт.мед.наук. М.2003; 299 с.

3. Ардатская М.Д., Минушкин О.Н., Дубинин A.B. Дисбактериоз кишечника: современные аспекты изучения проблемы, принципы диагностики и лечения (обзор). Тер.архив 2001; 2: 67-72.

4. Бабин В.Н., Домарадский И.В., Дубинин A.B., Кондракова O.A. Биохимические и молекулярные аспекты симбиоза человека и его микрофлоры. Рос.хим.журнал(ЖРХО им.Менделеева) 1994;38(6):66-78.

5. Готтшалк Г. Метаболизм бактерий. Пер. с англ. М: МИР, 1982.

6. Гунзалус И., Стайнер 3. Метаболизм бактерий. Пер. с англ. М.Издатинлит; 1963: 450с.

7. Дубинин A.B., Бабин В.Н., Раевский П.М. Трофические и регуляторные связи макрорганизма и микрофлоры. Клин.медицина 1991; 69(7): 24-28.

8. Ерошкина Т.Д., Мусин И.И., Головенко О.В. и др. Определение летучих жирных кислот для диагностики и лечения воспалительных заболеваний кишечника. Пособие для врачей. М.:2003: 23 с.

9. Кондракова О. А., Бабин В.Н., Дубинин А.В. Определение метаболической активности микрофлоры кишечника для комплексной оценки микроэкологических и функциональных нарушений толстой кишки и выбора терапевтических схем. Пособие для врачей. М.,2002, 36 с.

10. Конев Ю.В. Дисбиозы и их коррекция. Consilium Medicum 2005; 6(7): 786-791.

11. Красноголовец В.Н. Дисбактериоз кишечника. М.Медицина 1989:208 с.

12. Парфенов А.И. Клинические проблемы дисбактериоза. Рос. гастроэнтерологический журнал 1999; 4: 49-55.

13. Парфенов А.И., Осипов Г. А., Богомолов П.О. Дисбактериоз кишечника: новые подходы к диагностике и лечению. Consilium Medicum 2001; 6(3): 270-272.

14. П.Семенова Э.Э. Короткоцепочечные жирные кислоты толстокишечной микрофлоры у больных неспецифическим язвенным колитом, их значение в формировании клиники и диагностике. Автореф.дис.канд мед.наук. М.,2002, 25 с.

15. Шендеров Б.А. Медицинская микробная экология и функциональное питание (в 3-х томах). М.: ГРАНТЪ; 1998: 416 с.

16. Agarwal V.P., Schimmel Е.М. Diversion colitis: a nutritional deficiency syndrome? Nutr Rev 1989; 47: 257-261.

17. Aichbichler B.W., Zerr C.H., Santa Ana C.A. et al. Proton-pump inhibition of gastric chloride secretion in congenital chloridorrhea. N Engl J Med 1997; 336: 106-109.

18. Alam N.H., Ashrof H. Treatment of infectious diarrhea in children. Pediatr Drugs 2003; 5: 151-165.

19. Albert M.J., Bhat P., Rajan D. et al. Faecal flora of South Indian infants and young children in health and with acute gastroenteritis. J Med Microbiol 1978; 11: 137-143.

20. Allan E.S., Winter S., Light A.M., Allan A. Mucosal enzyme activity for butyrate oxidation; no defect in patients with ulcerative colitis. Gut 1996; 38(6): 886-893.

21. Alrefai W.A., Tyagi S., Gill R. et al. Regulation of butyrate uptake in Caco 2 cells: involvement of monocarboxylate transporter MCT1. Gastroenterology 2001; 120: A 528.

22. Araki Y., Andoh A., Koyama S. et al. Effects of germinated barley foodstuff on microflora and short chain fatty acid production in dextran sulfate sodium-induced colitis in rats. Biosci Biotech Biochem 2000; 64: 17941800.

23. Archer S.Y., Meng S., Shei A. et al. p21 (WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998; 95: 6791-6796.

24. Avivi-Green C., Polak-Charcon S., Madar Z. et al. Apoptosis cascade ptoteins are regulated in vivo by high intracolonic butyrate concentration: correlation with colon cancer inhibition. Oncol Res 2000: 12: 83-95.

25. Bamba T., Kanauchi O., Andoh A., Fujiyama Y. A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. J Gastroenterol Hepatol 2002; 17: 818-824.

26. Barruel N., Carol M., Casellas F., et al. Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 2002; 51: 699-664.

27. Bartram H.P., Scheppach W., Schmid H. et al. Proliferation of human colonic mucosa as an intermediate biomarker of carcinogenesis: effects of butyrate, deoxycholate, calcium, ammonia and pH. Cancer Res 1993; 53: 3283-3288.

28. Basson M.D., Turowski G.A., Rashid Z. et al. Regulation of human colonic cell line proliferation and phenotype by sodium butyrate. Dig Dis Sci 1996; 41(10): 1986-1993.

29. Beltinger J., McKaig B.C., Makh S. et al. Human colonic subepithelial myofibroblasts modulate transepithelial resistance and secretory response. Am J Physiol 1999; 277: C 271-279.

30. Berggren A.M., Bjorck I.M.E., Nyman E.M.G.L. et al. Short-chain fatty acid content and pH in caecum of rats given various sources of carbohydrates. J Sci Food Agric 1993; 63: 397-406.

31. Berschneider H.M., Powell D.W. Fibroblasts modulate intestinal secretory responses to inflammatory mediators. J Clin Invest 1992; 89: 484-489.

32. Binder H.J., Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 1989; 96: 989-996.

33. Bird A.R., Brown I.L., Topping D.L. Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 2000; 1: 25-37.

34. Bitton A., Peppercorn M.A., Antonioli D.A., et al. Clinical, biological, and histologic parameters as predictors of pelapse in ulcerative colitis. Gastroenterology 2001; 120(1): 13-20.

35. Boffa L.C., Lupton J.R., Mariani M.R. et al. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short-chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res 1992; 52: 59065912.

36. Bowling T.E., Raimundo A.H., Grimble G.K., Silk D.B.A. Reversal by short-chain fatty acids of colonic fluid secretion induced by enteral feeding. Lancet 1993; 342: 1266-1268.

37. Brass E.P., Taniliani A.G., Allen R.H., Stabler S.P. Coenzyme A metabolism in vitamin B12 deficient rats. JNutr 1990; 120: 290-297.

38. Breuer R.I., Buto S.K., Christ M.L. et al. Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Dig Dis Sci 1991; 36: 185-187.

39. Breuer R.I., Soergel K.H., Lashner B.A. et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomized, placebo controlled trial. Gut 1997; 40:485-491.

40. Brignola C., Iannone P., Belloli C., et al. Prediction of relapse in patients with Crohn's disease in remission: a simplified index using laboratory tests, enhanced by clinical characteristics. Eur J Gastroenterol Hepatol 1994; 6: 955-961.

41. Brocklehurst J.R., Walker A.C. Cholestyramine in treatment of congenital chloride diarrhea. Med J Aust 1978; 1: 504-505.

42. Buda A., Qualtrough D., Jepsen M.A. et al. Butyrate downregulates alpha2 betal integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut 2003; 52: 729-734.

43. Caamano C.J., Iglesias J., Mareo C., Linares A. In vivo utilization of 3-C14. acetoacetate for lipid and amino acid synthesis in the 15-day-old chick. Comp Biochem Physiol 1988; 91B: 1-5.

44. Canani R.B., Terrin G., Cirillo P. et al. Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology 2004; 127: 630-634.

45. Casburn-Jones A.C., Farthing M.J.G. Management of infectious diarrhea. Gut 2004; 53:296-305.

46. Charney A.N., Micic L., Egnor R.W. Nonionic diffusion of short-chain fatty acids across rat colon. Am J Physiol 1998; 274: G518-524.

47. Chu S., Montrose M.H. Non-ionic diffusion and carrier-mediated transport drive extracellular pH regulation of mouse colonic crypts. J Physiol (Lond) 1996; 494: 783-793.

48. Clark E.B., Vanderhoof J.A. Effect of acetozolamide on electrolyte balance in congenital chloridorrhea. J Pediatr 1997; 91: 148-149.

49. Clausen M.R., Bonnen H., Tvede M., Mortensen P.B. Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhea. Gastroenterology 1991; 101: 1497-1504.

50. Clausen M.R., Mortensen P.B. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 1995; 37(5): 684-689.

51. Cohan V.L., Scott A.L., Dinarello C.A. et al. Interleukin-1 is a mucus secretagogue. Cell Immunol 1991; 136: 425-434.

52. Conway P.L. Probiotics and the gastrointestinal microbiota. In Gernfree Life and Its Ramifications. Hashimoto K., Sakakibara B., Tazume S., Shimizu K. (eds). XI1ISG Publishing Committee, Shiozawa; Japan, 1997: 97-100.

53. Cook S.I., Sellin J.H. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 1998; 12: 499-507.

54. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318-1322.

55. Cummings J.H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1985; 1: 1206-1208.

56. Cummings J.H. Quantitating short chain fatty acid production in humans. In: Binder H.J., Cummings J., Soergel K. (eds). Short chain fatty acid. Kluwer Academic Publishers; 1994: 11-19.

57. Cummings J.H. Some aspects of dietary fibre metabolism in the human gut. In: Birch G.G., Parker K.G. (eds). Food and Health: Sci a Technol; London. Appl Sci Publish Ltd; 1995:441-458.

58. Cummings J.H. Dietary carbohydrates and the colonic microflora. Curr Opin ClinNutrMetab Care 1998; 1: 409-414.

59. Cummings J.H., Englyst H.N. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 1987; 45: 1243-1255.

60. Cummings J.H., Macfarlane G.T. The control and consequences of bacterial fermentation in the human colon. J Appl Bacterial 1991; 70: 443-459.

61. D'Argenio G., Cosenza V., Sorrentini I. et al. Sodium butyrate, 5-ASA and substitutive factor XI11 treatment in experimental colitis in the rat: effects on transglutaminase and histological activity. Gastroenterology 1993; 104: A 688.

62. Den Hoed P.T., von Goch J.J., Veen H.F., Ouwendijk R.J. Severe pouchitis successfully treated with short-chain fatty acids. Can J Surg 1996; 39: 168169.

63. Den Hond E., Niele M., Evenepoel P. et al. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology 1998; 115(3): 584-590.

64. De Silva H.J., Ireland A., Kettlewell M. et al. Short-chain fatty acid irrigation in severe pouchitis. N Engl J Med 1989; 321: 1416-1417.

65. Dieleman L.A., Goerres M., Arends A., et al. Lactobacillus GG prevents recurrence of colitis in HLA-B 27 transgenic rats after antibiotic treatment. Gut 2002; 52: 370-376.

66. Dombrowicz D., Nutten S., Desreumaux P., et al. Role of the high affinity immunoglobulin E receptor in bacterial translocation and intestinal inflammation. J Exp Med 2001; 193: 25-34.

67. Domon-Dell C., Wang Q., Kim S. et al. Stimulation of the intestinal Cdx2 homeobox gene by butyrate in colon cancer cells. Gut 2000; 50: 525-529.

68. Dudeja P.K., Gill R., Ramaswamy K. Absorption-secretion and epithelial cell function. In: Koch T.R.(ed). Colonic diseases. Humana Press: Totowa, New Jersey; 2003: 3-23.

69. Duffy M.M., Regan M.C., Ravichandran P. et al. Mucosal metabolism in ulcerative colitis and Crohn's disease. Dis Colon Rectum 1998; 41(11): 1399-1405.

70. Edmond L.M., Hopkins M.J., Magee E.A., Cummings J.H. The effect of 5-aminosalicylic acid-containing drugs on sulphide production by sulphate-reducing and amino acid-fermenting bacteria. Inflamm Bowel Dis 2003; 9(1): 10-17.

71. Edwards C.A., Rowland I.R. Bacterial fermentation in the colon and its measurement. In: Schweizer T.F., Edwards C.A. (eds). Dietary fibre a component of food. ILSI Human Nutrition Reviews. London: Springer; 1992: 119-136.

72. Emenaker N.J., Basson M.D. Short chain fatty acids differentially modulate cellular phenotype and c-myc protein levels in primary human nonmalignant and malignant colonocytes. Dig Dis Sci 2001; 46: 96-105.

73. Emenaker N.J., Calaf G.M., Cox D. et al. Short-chain fatty acids inhibit invasive human colon cancer by modulating uPA, TIMP-2, mutant p53, Bel2, Bax, p21 and PCNA protein expression in an in vitro cell culture model. J Nutr 2001; 131: S3041-3146.

74. Englyst H.N., Hay S., Macfarlane G.T. Polysaccharide breakdown by mixed populations of human faecal bacteria. Microbiol Ecol 1987; 95: 163-171.

75. Etterlin C., McKeown A., Bingham S.A. et al. D-Lactate and acetate as markers of fermentation in man. Gastroenterology 1992; 102: A 551.

76. Fabia R., Ar'Rajab A., Johannson M.L., et al. Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion 1993; 54: 248-255.

77. Famularo G., Mosca L., Minisola G., et al. Probiotic lactobacilli: a new perspective for the treatment of inflammatory bowel disease. Curr Pharm Des 2003; 9: 1973-1980.

78. Farrell R.J., LaMont J.T. Microbial factors in inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31: 41-62.

79. Farthing M.J.G. Dehydration and rehydration in children. N: Arnaud MJ. (ed). Hydration throughout life. Paris: John Libbey Eurotext; 1998: 159-173.

80. Favier C., Neut C., Mizon C., et al. Fecal beta-D-galactosidase production and bifidobacteria are decreased in Crohn's disease. Dig Dis Sci 1997; 42: 817-822.

81. Fedorak R.N., Gionchetti P., Campieri M., et al. VSL3 probiotic mixture induces remission in patients with active ulcerative colitis. Gastroenterology 2003; 124: A 377.

82. Fernandez-Banares F., Hiuojoso J., Sanchez-Lombrana J.L. et al. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Am J Gastroenterol 1999; 94(2): 427-433.

83. Finnie I.A., Taylor B.A., Rhodes J.M. Mucosal metabolism in ulcerative colitis. A reappraisal of the butyrate hypothesis. Clin Sci 1992; 83: pl7-18.

84. Fleming S.E., Arce D.S. Volatile fatty acids: their production, absorption, utilization and roles in human health. Clin Gastroenterol 1986; 15: 787-812.

85. Fleming S.E., Rodriguez M.A. Influence of dietary fiber on fecal excretion of volatile fatty acids by human adults. J Nutr 1983; 113: 1613-1625.

86. Florin T.H.J., Gibson J.R., Neale G., Cummings J.H. A role for sulphate reducing bacteria in ulcerative colitis? Gastroenterology 1990; 98: A 170.

87. Flourie B., Florent C., Jouany J.-P. et al. Colonic metabolism of wheat starch in healthy humans. Gastroenterology 1986; 90: 111-119.

88. Frenkel E.P., Kitchens R.L., Johnston J.M. The effect of vitamin B12 deprivation on the enzymes of fatty acid synthesis. J Biol Chem 1973; 248: 7540-7546.

89. Fukuda M., Kanauchi O., Araki Y. et al. Prebiotic treatment of experimental colitis with germinated barley foodstuff: a comparison with probiotic or antibiotic treatment. Int J Mol Med 2002; 9: 65-70.

90. Furrie E., Macfarlane S., Cummings J.H., et al. Systemic antibodies towards mucosal bacteria in ulcerative colitis and Crohn's disease differentially activate the innate immune response. Gut 2004; 53: 91-98.

91. Garnet L., Daviaud D., Denis-Pouxviel C. et al. Effects of short-chain fatty acids on growth and differentiation of the human colon-cancer cell line HT29. Int J Cancer 1992; 52: 286-289.

92. Giaffer M.H., Holdsworth C.D., Duerden B.I. The assessment of fecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. J Med Microbiol 1991; 35: 238-243.

93. Gibson G. Dietary recommendations for active and inactive ulcerative colitis. In: Bayless T.M., Hanauer S.B. (eds). Advanced therapy of inflammatory bowel disease. B.C.Decker Inc: Hamilton-London; 2001: 161164.

94. Gibson G.R., Beatty E.R., Wang X. et al. Selective stimulation of Bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995; 108: 975-982.

95. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 1991; 86: 103-112.

96. Gibson G.R., Wang X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 1994; 77: 412-420.

97. Gibson P. Ulcerative colitis: an epithelial disease? Clin Gastroenterol 1997; 11: 17-33.

98. Gibson P.R., Folino M., Rosella O. et al. Effects of dietary fibre on colonic mucosal characteristics in rats. Gastroenterology 1993; 104: A 405.

99. Gibson P., Rosella O. Interleukin 8 secretion by colonic crypt cells in vitro: response to injury suppressed by butyrate and enhanced in inflammatory bowel disease. Gut 1995; 37(4): 536- 543.

100. Gibson P.R., Rosella O., Young G.P. Butyrate: a potent inhibitor of urokinase secretion by colonic epithelium. Gastroenterology 1993; 104: A 706.

101. Gionchetti P., Rizzelo F., Venturi A., et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 2000; 119: 305-309.

102. Glasgow A.M., Chose H.P. Effect of propionic acid on fatty acid oxidation and ureagenesis. PedRes 1976; 10: 683-686.

103. Glotzer D.J., Glick M.E., Goldman H. Proctitis and colitis following diversion of the faecal stream. Gastroenterology 1981; 80: 438-441.

104. Gorbach S.L., Banwell J.G., Chatterjec B.D. et al. Acute undifferentiated human diarrhea in the tropic. 1. Alterations in intestinal microflora. J Clin Invest 1977; 50: 881-889.

105. Gore S.M., Fontaine O., Pierce N.F. Impact or rice-based oral rehydration solution on stool output and duration of diarrhea: meta-analysis of 13 clinical trials. BMJ 1992; 304: 287-291.

106. Guillemot F., Colombel J.F., Neut C. et al. Treatment of diversion colitis by short-chain fatty acids: prospective and double-blind study. Dis Colon Rectum 1991; 34: 861-864.

107. Hadjiagapiou C., Schmidt L., Dudeja P.K. et al. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000; 279: G775-780.

108. Hague A., Elder D.J., Hicks D.J. et al. Apoptosis in colorectal tumor cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 1995; 60: 400-406.

109. Halestrap A.P., Price N.T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999;343:281-299.

110. Hallert C., Bjorck I., Nyman M. et al. Increasing faecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm Bowel Dis 2003; 9(2): 116-121.

111. Hallert C., Kaldma M., Petersson B.G. Ispaghula husk may relieve gastrointestinal symptoms in ulcerative colitis in remission. Scand J Gastroenterol 1991; 26: 747-750.

112. Harig J.M., NG E.K., Dudeja P.K. et al. Transport of n-butyrate into human colonic luminal membrane vesicles. Am J Physiol 1996; 271: G415-422.

113. Harig J.M., Soergel K.H., Barry J.A., Ramaswamy K. Transport of propionate by human ileal brush-border membrane vesicles. Am J Physiol 1991; 260: G776-782.

114. Harig J.M., Soergel K.H., Komorowski R.A. et al. Treatment of diversion colitis with short-chain fatty acid irrigation. N Engl J Med 1989; 320: 23-28.

115. Hart A.L., Kamm M.A. Use of probiotics in the treatment of inflammatory bowel disease. J Clin Gastroenterol 2003; 36: 111-119.

116. Hartley M.G., Hudson M.J., Swarbrick E., et al. The rectal mucosa-associated microflora in patients with ulcerative colitis. J Med Microbiol 1992; 36: 96-103.

117. He F., Ouwehand A.C., Isolauri E., et al. Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 2001; 43: 351-354.

118. Hebuterne X. Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 2003; 6: 49-54.

119. Heimdahl A., Nord C.E. Effect of erythromycin and clindamycin on the indigenous human anaerobic flora and new colonization of the gastrointestinal tract. Eur J Clin Microbiol 1982; 1: 38-48.

120. Hellerstein M.K., Christiansen M., Kaempfer S. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 1991; 87: 1841-1852.

121. Hendson G., McLeod R., Cohen Z., Odze R. Morphological changes in chronic ulcerative colitis after diversion of the fecal stream. Gastroenterology 1993; 104: A 713.

122. Hill MJ. Bacterial adaptation to lactase deficiency. In: Delmont J. (ed). Milk intolerance and rejection. Basel: Karger; 1983: 22-26.

123. Hinterleitner T.A., Saada J.I., Berschneider H.M. et al. IL-1 stimulates intestinal myofibroblast COX gene expression and augments activation of Cl-secretion in T84 cells. Am J Physiol 1996; 271: C 1262-1268.

124. Hoglund P., Holmberg C., Sherman P., Kere J. Distinct outcomes of chloride diarrhoea in two siblings with identical genetic background of the disease: implications for early diagnosis and treatment. Gut 2001; 48: 724727.

125. Holmberg C. Congenital chloride diarrhea. Clin Gastroenterol 1986; 3: 583-602.

126. Hooper L.V., Midvedt T., Gordon J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22: 283-307.

127. Hooper L.V., Wong M.H., Thelin A. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001; 291: 881-884.

128. Hopkins M.J., Sharp R., Macfarlane G.T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001; 48: 198-205.

129. Houghton L.A., Green T.J., Danovan U.M., et al. Association between dietary fiber intake and the folate status of a group of female adolescents. Am J Clin Nutr 1997; 66: 1414-1421.

130. Hove H., Mortensen P.B. Short-chain fatty acids in the non-adapted and adapted pelvic ileal pouch. Scand J Gastroenterol 1996; 31(6): 568-574.

131. Hoverstad T., Carlstedt-Duke B., Lingaas E. et al. Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol 1986; 21: 621626.

132. Ilnyckyj A., Shanahan F., Anton P.A. et al. Quantification of the placebo response in ulcerative colitis. Gastroenterology 1997; 112: 18541858.

133. Inan M.C., Rasoulpour R.J., Yin L. et al. The luminal short-chain fatty acid butyratre modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000; 118: 724-734.

134. International Study Group on Reduced-Osmolality ORS Solutions. Multicentre evaluation of reduced-osmolality oral rehydration salts solution. Lancet 1995; 346: 282-285.

135. Ireland J., Jewell D.P. 5-aminosalic acid (5-ASA) has no effect on butyrate metabolism in human colonic epithelial cells. Gastroenterology 1990; 98: A 176.

136. Ireland A., Priddle J.D., Lewell D.P. Acetylation of 5-aminosalicylic acid by isolated human colonic epithelial cells. Clin Sci 1990; 78: 105-111.

137. Ishikawa H., Akedo I., Umesaki Y., et al. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr 2003; 22: 56-63.

138. Isono A., Katsuno T., Morita H. et al. Clostridium butyricum culture supernatant downregulates Toll-like receptor 4 mRNA level in human colonic epithelial cells. Gastroenterology 2004; 126; 4 (suppl 2): W 1151.

139. Ito M., Deguchi Y., Miyamori A. et al. Effects of administration of galactooligosacharides on the human faecal microflora, stool weight and abdominal sensation. Microb Ecol Health Dis 1990; 3: 285-292.

140. Iwakin D., Podolsky D.K. Keratinocyte growth factor promotes goblet cell differentiation through regulation of goblet cell silencer inhibitor. Gastroenterology 2001; 120: 1372-1380.

141. Jacobasch G., Schmiedl D., Kruschewski M. et al. Dietary resistant starch and chronic inflammatory bowel diseases. Int J Colorectal Dis 1999; 14: 201-211.

142. Jeffers M., Mc Donald W.F., Chillakuru R.A., et al. A novel human fibroblast growth factor trials experimental intestinal inflammation. Gastroenterology 2002; 123: 1151-1162.

143. Jenkins D.J.A., Wolever T.M.S., Jenkins A. et al. Specific types of colonic fermentation may raise low-density-lipoprotein-cholesterol concentrations. Am J ClinNutr 1991; 54: 141-147.

144. Jensen M.T., Cox R.P., Jensen B.B. Microbial production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition inbackfat. Anim Sci 1995; 61: 293-304.

145. Jorgensen J., Mortensen P.B. Hydrogen sulphide and colonic epithelial metabolism implications for ulcerative colitis. Dig Dis Sci 2001; 46(8): 1722-1732.

146. Kanauchi O., Mitsuyama K., Andoh A. et al. Beneficial effects of prebiotics, germinated barley foodstuff, in the long term treatment of ulcerative colitis: a multi-center open control study. Gastroenterology 2003; 124; 4 (suppl 1): S 1749.

147. Kanauchi O., Serizawa I., Araki Y., et al. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J Gastroenterol 2003; 38: 134-141.

148. Kanauchi O., Suga T., Tochihara M., et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 2002; 37: 67-72.

149. Kere J., Lohi H., Hoglund P. Genetic disorders of membrane transport. Congenital chloride diarrhea. Am J Physiol 1999; 276: G7-13.

150. Kim E.C., Zhu Y., Andersen V. et al. Cytokine mediated PGE2 expression in human colonic fibroblasts. Am J Physiol 1998; 275: C988-994.

151. Kishi D., Takahashi I., Kai Y., et al. Alteration of V beta usage and cytokine production of CD4+ TCR beta beta homodimer T cells byelimination of Bacteroides vulgatus prevents colitis in TCR alpha-chain-deficient mice. J Immunol 2000; 165: 5891-5899.

152. Klessen B., Hartmann L., Blaut M. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 2001; 86: 291-300.

153. Kruh J., Defer N., Tichonicky L. Action moléculaire et cellulaire du butyrate. CR Soc Biol 1992; 186: 12-25.

154. Kruis W., Ralk E.K., Fric P., Stolte M. Maintenance of remission in ulcerative colitis is equally effective with Escherichia coli Nissle 1917 and with standard mesalamine. Gastroenterology 2001; 120: A 127.

155. Kruis W., Schutz E., Fric P., et al. Double-blind comparison of an anal Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997; 11: 853-858.

156. Kunzelmann K., Mall M. Electrolyte transport in the mammalian colon. Mechanism and implications for disease. Physiol Rev 2002; 82: 245289.

157. Kvietys P.R., Granger D.N. Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 1981; 80: 962969.

158. Laine L., Ahnen D., McClain C. et al. Potential gastrointestinal effects of long-term acid suppression with proton pump inhibitors. Aliment Pharmacol Ther 2000; 14: 651- 668.

159. Landau B.R. Estimating glucuneogenic rates in NIDDM. In: Ostenson C., Efendic S., Vranic S.(eds). New concepts in the pathogenesis of NIDDM. New York: Plenum Press, 1993.

160. Langlands S.J., Hopkins M.J., Coleman N., Cummings J.H. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 2004; 53: 1610-1616.

161. Lawrence T., Gilroy D.W., Colville-Nash P.R. et al. Possible new role for NF-kappa B in the resolution of inflammation. Nat Med 2001; 7: 12911297.

162. Le Blay G., Michel C., Blottiere H.M. et al. Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in caecal butyrate in rats. J Nutr 1999; 129:2231-2235.

163. Lehninger A.L. Principles of biochemistry. New York: Worth; 1982.

164. Lenyckyj A., Shanahan F., Anton P.A., et al. Quantification of the placebo response in ulcerative colitis. Gastroenterology 1997; 112: 18541858.

165. Leo S., Leandro G., DiMatteo G. et al. Ulcerative colitis in remission: is it possible to predict the risk of relapse? Digestion 1989; 44: 217-221.

166. Lepage P., Seksik Ph., Sutren M., et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 2005; 11 (5): 473480.

167. Lipkin M. Biomarkers of increased susceptibility to gastrointestinal cancer: new application to studies of cancer prevention in human subjects. Cancer Res 1988; 48: 235-245.

168. Liu Q., Shimoyama T., Suzuki K. et al. Effect of sodium butyrate on reactive oxygen species generation by human neutrophils. Scand J Gastroenterol 2001; 36: 744-750.

169. Lotz M.M., Rabinovitz I., Mercurio A.M. Intestinal restitution: progression of actin cytoskeleton rearrangements and integrin function in a model of epithelial wound healing. Am J Pathol 2000; 156: 985-996.

170. Lu L., Walker A. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am J Clin Nutr 2001; 73: SI 122411230.

171. Luhrs H., Gerke T., Boxberger F. et al. Butyrate inhibits interleukin-1 -mediated nuclear factor-kappa B activation in human epithelial cells. Dig Dis Sci 2001; 46: 1968-1973.

172. Luhrs H., Gerke T., Schauber J. et al. Cytokine-activated degradation of inhibitory kappa B protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorectal Dis 2001; 16: 195-201.

173. Luhrs H., Hock R., Schauber J. et al. Modulation of HMG-N2 binding to chromatin by butyrate-induced acetylation in human colon adenocarcinoma cells. Int J Cancer 2002; 97: 567-573.

174. Macfarlane G.T., Cummings J.H. Probiotics and prebiotics: can regulating the activities of intestinal bacteria benefit health? BMJ 1999; 318: 999-1003.

175. Macfarlane G.T., Cummings J.C. Diet and the metabolism of intestinal bacteria. In: Brostoff J., Challacombe S.J. (eds). Food allergy and intolerance. Amsterdam: Elsevier Science; 2002: 321-341.

176. Macfarlane G.T., Gibson G.R., Beatty E.R., Cummings J.H. Estimation of short-chain fatty acid production from protein by human intestinal bacterial based on branched chain fatty acid measurements. FEMS Microbiol Ecol 1992; 101: 81-88.

177. Macfarlane G.T., Macfarlane S. Human intestinal "biofilm" communities. In: Lappin -Scott H. (ed). The life and death of biofilm. Cardiff: BioLine; 1995: 83-87.

178. Macfarlane S., Cummings J.H., Macfarlane G.T. Bacterial colonization of surfaces in the large intestine. In: Roberfroid M.B.(ed). Colonic microbiota, nutrition and health. Netherlands: Kluwer Academic Publishers; 1999: 71-87.

179. Macfarlane S., McBain A.J., Macfarlane G.T. Consequences of biofilm and sessile growth in the large intestine. Adv Dental Res 1997; 11: 59-68.

180. Mack D.R., Michil S., Wei S., et al. Probiotics inhibit enteropathogenic E.coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276: G941-G950.

181. Macpherson A.J., Gatto D., Sainsbury E. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288: 2222-2226.

182. Madara J.L., Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1989; 83: 724-727.

183. Madsen K., Cornish A., Soper P. et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001; 121:580-591.

184. Madsen K.L., Doyle J.S., Jewell L.D. et al. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999; 116: 1107-1114.

185. Magee E.A.M., Richardson C.J., Cummings J.H. The contribution of dietary protein and sulphur food additives to faecal sulphide in humans. Digestion 1998; 59(suppl 3): 53.

186. Magee E.A.M., Richardson C.J., Hughes R. et al. The contribution of dietary protein to sulphide production in the large intestine: an in vitro and controlled feeding study in human volunteers. Am J Clin Nutr 2000; 72: 1488-1494.

187. Mahida, Beltinger J., Makh S. et al. Adult human colonic subepithelial myofibroblasts express extracellular matrix proteins and cyclooxygenese-1 and-2. Am J Physiol 1997; 273: G1341-1348.

188. Makela S., Kere J., Holmberg C., Hoglund P. SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 2002; 20: 425-438.

189. Mangin I., Bonnet R., Seksik P., et al. Molecular infentory of fecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol 2004; 50: 25-36.

190. Mariadason J.M., Velcich A., Wilson A.J. et al. Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology 2001; 120: 889-899.

191. Marteau P., Pochart P., Dore J., et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 2001; 67; 4939-4942.

192. Mathews J.B., Hassan I., Meng S. et al. Na-K-Cl contransporter gene expression and function during enterocyte differentiation. Modulation of CI" secretory capacity by butyrate. J Clin Invest 1998; 101: 2072-2079.

193. Matsuda H., Fujiyama Y., Andoh A., et al. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J gastroenterol Hepatol 2000; 15: 61-68.

194. Matsuishi T., Stumpf D.A., Seliem M. et al. Propionate mitochondrial toxicity in liver and skeletal muscle: acyl CoA levels. Biochem Med Metab Biol 1991; 45: 244-253.

195. McBurney M.I., Thompson L.U. Effect of human faecal inoculum on in vitro fermentation variables. Br J Nutr 1987; 58: 233-243.

196. Mclntre A., Gibson P.R., Young G.P. Butyrate production from dietary fibers and protection against large bowel cancer in a rat model. Gut 1993;34:386-391.

197. McKay D.M., Croitoru K., Perdue M.H. T-cell-monocyte interactions regulate epithelial physiology in a coculture model of inflammation. Am J Physiol 1996; 270: C418-428.

198. McKay L.F., Eastwood M.A., Brydon W.G. Methane excretion in man- a study of breath, flatus, and faeces. Gut 1985; 26: 69-74.

199. McNeil N.I. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984; 39: 338-342.

200. Menzel T., Luhrs H., Zirlik S. et al. Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis 2004; 10: 122-128.

201. Menzel T., Schauber J., Kreth F. et al. Butyrate and aspirin in combination have an enhanced effect on apoptosis in human colorectal cancer cells. Eur J Cancer Prev 2002; 11: 271-281.

202. Mitsuyama K., Saiki T., Kanauchi O. et al. Treatment of ulcerative colitis with germinated barley foodstuff feeding: a pilot study. Aliment Pharmacol Ther 1998; 12: 1225-1230.

203. Mitsuyama K., Toyonaga A., Sata M. Intestinal microflora as a therapeutic target in inflammatory bowel disease. J Gastroenterol 2002; 37 (Suppl. 14): 73-77.

204. Mizoguchi A., Mizoguchi E., Chiba C., et al. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996; 184: 707-715.

205. Mortensen P.B., Clausen M.R. Antibiotic-associated diarrhoea. In: Binder H.J., Cummings J., Soergel K. (eds). Short chain fatty acid. Kluwer Academic Publishers; 1994: 240-247.

206. Mortensen F.V., Hessov I., Birke H. et al. Microcirculatory and trophic effects of short chain fatty acids in the human rectum after Hartmann's procedure. Br J Surg 1991; 78: 1208-1211.

207. Mortensen F.V., Nielsen H., Mulvany M.J., Hessov I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 1990; 31: 1391-1394.

208. Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper's biochemistry; 22nd edn. Connecticut: Appleton & Lange; 1990.

209. Musch M.W., Bookstein C., Xie Y. et al. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 2001; 280: G687-693.

210. Mylonaki M., Rayment N.B., Rampton D.S., et al. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 2005; 11 (5): 481-487.

211. Neut C., Bulois P., Desreumaux P., et al. Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease. Am J Gastroenterol 2002; 97: 939-946.

212. Nordgaard I., Hove H., Clausen M.R. et al. Colonic production of butyrate in patients with previous colonic cancer during long-term treatment with dietary fiber (Plantago ovata seeds). Scand J Gastroenterol 1996; 31: 1011-1020.

213. Ohkusa T., Sato N., Ogihara T., et al. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 2002; 17: 849-853.

214. Onderdonk A.B., Franklin M.L., Cisneros R.L. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun 1981; 32: 225-231.

215. Palmer D.G., Paraskeva C., Williams A.C. Modulation of p53 expression in cultured colonic adenoma cell lines by the naturally occurring lumenal factors butyrate and deoxycholate. Int J Cancer 1997; 73: 702-706.

216. Pathmakanthan S., Li C.K., Cowie J., Hawkey C.J. Lactobacillus plantarum 299: beneficial in vitro immunomodulation in cells extracted from inflamed human colon. J Gastroenterol Hepatol 2004; 19: 166-173.

217. Pathmakanthan S., Thornley J.P., Hawkey C.J. Mucosally associated bacterial flora of the human colon: quantitative and species specific differences between normal and inflamed colonic biopsies. Microb Ecol Health Dis 1999; 11: 169-174.

218. Patz J.} Jacobsohn W.Z., Gottschalk-Sabag S. et al. Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas. Am J Gastroenterol 1996; 91(4): 731-734.

219. Pavan S., Desreumaux P., Mercenier A. Use of mouse models to evaluate the persistence, safety, and immune modulation capacities of lactic acid bacteria. Clin Diagn Lab Immunol 2003; 10: 696-701.

220. Perrin P., Pierre F., Patry Y. et al. Only fibers promoting a stable butyrate producing colonic ecosystem decrease the rats of aberrant crypt foci in rats. Gut 2001; 48: 53-61.

221. Pfau P.R., Rombeau J.L. Nutrition. Advances in gastroenterology. Med Clin North Am 2000; 84: 1209-1230.

222. Pitcher M.C., Beatty E.R., Cummings J.H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to fecal sulfide in patients with ulcerative colitis. Gut 2000; 46: 64-72.

223. Pitcher M.C.L., Cummings J.H. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 1996; 39: 1-4.

224. Plaisancie P., Barcelo A., Moro F. et al. Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am J Physiol 1998; 275: G1073-1084.

225. Pochart P., Lemann F., Flourie B., et al Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology 1993; 105: 1281-1285.

226. Potten C.S., Kellet M., Roberts S.A., et al. Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut 1992; 33:71-78.

227. Powell G.W., Mifflin R.C., Valentich J.D. et al. Myofibroblasts. 1.Paracrine cells important in health and disease. Am J Physiol 1999; 277: Cl-9.

228. Powell D.W., Mifflin R.C., Valentich J.D. et al. Myofibroblasts. 11 .Intestinal subepithelial myofibroblasts. Am J Physiol 1999; 277: CI83-201.

229. Price N.T., Jackson V.N., Halestrap A.P. Cloning and sequencing of four new mammalian monocarboxylate transporter (MET) homologuesconfirms the existence of a transporter family with an ancient past. Biochem J 1998; 329: 321-328.

230. Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomized trial. Br Med J 1989; 298: 82-86.

231. Rajendran V.M., Binder H.J. Characterization and molecular localization of anion transporters in colonic epithelial cells. Ann NY Acad Sci 2000; 915: 15-29.

232. Ramakrishna B.S. The use of short chain fatty acids in oral rehydration solutions. In: Binder H.J., Cummings J., Soergel K.(eds). Short chain fatty acid. Kluwer Academic Publishers; 1994: 221 -231.

233. Ramakrishna B.S., Mathan V.I. Colonic dysfunction in acute diarrhea: the role of luminal short chain fatty acids. Gut 1993; 34:1215-1218.

234. Ramakrishna B.S., Venkataraman S., Srinivasan P. et al. Amylase resistant starch plus oral rehydration solution for cholera. N Engl J Med 2000; 342:308-313.

235. Rath H.C., Herfarth H.H., Ikeda J.S., et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B 27 \ human beta 2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945-953.

236. Rath H.C., Wilson K.H., Sartor R.B. Differential induction of colitis and gastritis in HLA-B 27 transgenic rats selectively colonized with Bacteroides vulgatus and Escherichia coli. Infect Immun 1999; 67: 29692974.

237. Rayment N., Mylonaki M., Hudspith B., et al. Reduced bifidobacteria and increase E.coli in rectal mucosa-associated flora in active inflammatory bowel disease. Gut 2002; 50: A 29.

238. Rembacken B.J., Snelling A.M., Hawkey P.M., et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomized trial. Lancet 1999; 354: 635-639.

239. Resta-Lenert S., Truong F., Barrett K.E., Eckmann L. Inhibition of epithelial chloride secretion by butyrate: roleof reduced adenylyl cyclase expression and activity. Am J Physiol 2001; 281: CI837-1849.

240. Reynolds D.A., Rajendran V.M., Binder H.J. Bicarbonate stimulated C14. butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology 1993; 105: 725-732.

241. Rhodes J.M. Mucins and inflammatory bowel disease. QJM 1997; 90: 79-82.

242. Rhodes J., Thomas G.A.O. Mucosal protective and repair agents in the treatment of colitis. In: Bayless T.M., Hanauer S.B. (eds). Advanced therapy of inflammatory bowel disease. B.C.Decker Inc.: Hamilton-London; 2001: 107-110.

243. Richardson A.J., Calder A.G., Stewart C.S. et al. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gaschromatography. Lett Appl Microbiol 1989; 9: 58.

244. Ritzhaupt A., Wood I.S., Ellis A. et al. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol (Lond) 1998;513:719-732.

245. Roediger W.E.W. The colonic epithelium in ulcerative colitis: An energy deficiency disease? Lancet 1980; 2: 712-715.

246. Roediger W.E.W. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980; 21: 793-798.

247. Roediger W.E.W. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1980; 83: 424-429.

248. Roediger W.E.W. The starved colon diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 1990; 33: 858-862.

249. Roediger W.E.W. The imprint of disease on short chain fatty acid metabolism by colonocytes. In: Binder H.J., Cummings J., Soergel K. (eds). Short chain fatty acid. Kluwer Academic Publishers; 1994: 195-205.

250. Roediger W.E.W. Famine, fiber, fatty acids, and failed colonic absorption: does fiber fermentation ameliorate diarrhea? JPEN J Parenter Enteral Nutr 1994; 18(1): 4-8.

251. Roediger W.E.W., Duncan A., Kapaniris O., Millard S. Reducing sulphur compounds of the colon impair colonocyte nutrition: Implications for ulcerative colitis. Gastroenterology 1993; 104: 802-809.

252. Roediger W.E.W., Kapaniris O., Millard S. Lipogenesis from n-butyrate in colonocytes. Action of reducing agent and 5-aminosalicylic acid with relevance to ulcerative colitis. Mol Cell Biochem 1992; 118: 113-118.

253. Rosenberg L.E. Disorders of propionate, methyl malonate and vitamin B12 metabolism. In: Stanbury J.B., Wyngaarden J.B., Fredrickson D.S. (eds). The metabolic basis of inherited disease. McGraw-Hill; 1972.

254. Royall D., Wolever T.M.S., Jeejeebhoy K.N. Clinical significance of colonic fermentation. Am J Gastroenterol 1990; 85: 1307-1312.

255. Ruemmele F.M., Dionne S., Qureshi I. et al. Butyrate mediates Caco2 cell apoptosis via up-regulation of pro-apoptotic bak and inducing caspase3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Cell Death Diff 1999; 6: 729-735.

256. Ruemmele F.M., Schwartz S., Seidman E.G. et al. Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 2003; 52: 94-100.

257. Ruppin H., Bar-Meir S., Soergel K.H. et al. Absorption of short chain fatty acids by the colon. Gastroenterology 1980; 78: 1500-1507.

258. Ruseler-van Embden J.C., Schouten W.R., van Lieshout L.M. Pouchitis: results of microbial imbalance? Gut 1994; 35: 658-664.

259. Sahmoud T., Hoctin-Boes G., Modigliani R., et al. Identifying patients with a high risk of relapse in quiescent Crohn's disease. The GETAID

260. Group. The Groupe d'Etudes Therapeutiques des Affections inflammatoires Digestives. Gut 1995; 37 (6): 811-818.

261. Sandle G.I. Segmental differences in colonic function. In: Binder H.J., Cummings J., Soergel K. (eds). Short chain fatty acid. Kluwer Academic Publishers; 1994: 29-43.

262. Sartor R.B. Induction of mucosal immune responses by bacteria and bacterial components. Curr Opin Gastroenterol 2001; 17: 555-561.

263. Sartor R.B. Intestinal microflora in human and experimental inflammatory bowel disease. Curr Opin Gastroenterol 2001; 17: 324-330.

264. Sartor R.B. Microbial influences in inflammatory bowel diseases: role in pathogenesis and clinical implications. In: Sartor R.B., Sandborn W.J. (eds). Kirsner's inflammatory bowel diseases. 6-ed; Saunders; 2004: 138162.

265. Sartor R.B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126: 1620-1635.

266. Sartor R.B., Lichtman S.N. Mechanisms of systemic inflammation associated with intestinal injury. In: Targan S.R., Shanahan F. (eds). Inflammatory bowel disease: From bench to bedside. 2 ed/ Baltimore: Williams & Wilkins; 2003: 305-335.

267. Saunier K., Dore J. Gastrointestinal tract and the elderly: functional foods, gut microflora and healthy ageing. Dig Liver Dis 2002; 34 (suppl.2): S19-S24.

268. Scheppach W. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. DigDis Sci 1996; 41: 2254-2259.

269. Scheppach W., Fabian C., Sachs M., Kasper H. The effect of starch malabsorption on faecal short-chain fatty acid excretion in man. Scand J Gastroenterol 1988; 23: 755-759.

270. Scheppach W., Sommer H., Kirchner T. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103: 51-56.

271. Schley P.D., Field C.J. The immune enhancing effects of dietary fibres and prebiotics. Br J Nutr 2002; 87: S221-230.

272. Schultsz C., Berg F.V.D., Fiebo W. et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with control. Gastroenterology 1999; 117: 1089-1097.

273. Schultsz C., Van Den Berg F.M., Ten Kate F.W., et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high, numbers of bacteria compared with controls. Gastroenterology 1999; 117: 1089-1097.

274. Seksik P., Rigottier-Gois L., Gramet G., et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 2003; 52: 237-242.

275. Sellin J.H., De Soigne R. Short chain fatty acids have polarized effects on sodium transport and intracellular pH in rabbit proximal colon. Gastroenterology 1998; 114: 737-747.

276. Sellon R.K., Tonkonogy S., Schultz M., et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10 deficient mice. Infect Immun 1998; 66: 52245231.

277. Senagore A .J., MacKeigan J.M., Scheider M., Ebrom J.S. Short-chain fatty acid enemas: a cost-effective alternative in the treatment of nonspecific proctosigmoiditis. Dis Colon Rectum 1992; 35 (10): 923-927.

278. Sghir A., Gramet G., Suau A., et al. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 2000; 66: 2263-2266.

279. Shanahan F. Probiotics: a perspective on problems and pitfalls. Scand J Gastroenterol 2003; 237 (suppl.): 34-36.

280. Shapman M.A.S., Grahn M.F., Huttan M. et al. Failure of colonic mucosa to oxidise butyrate in ulcerative colitis. Gut 1991; 33: 540.

281. Shiba T., Aiba Y., Ishikawa H., et al.The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol 2003; 47: 371-378.

282. Shimotoyodome A., Meguro S., Hase T. et al. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 2000; 125: 525-531.

283. Shirazi T., Longman R.J., Corfield A.P., Probert C.S. Mucins and inflammatory bowel disease. Postgrad Med J 2000; 76: 473-478.

284. Siavoshian S., Blottiere H.M., Cherbut C. et al. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem Biophys Res Commun 1997; 232: 169172.

285. Siliprandi N., Di Lisa F., Menabo R. Propionyl-L-carnitine: biochemical significance and possible role in cardiac metabolism. Cardiovasc Drugs Ther 1991; 5: 11-16.

286. Simpson E.J., Chapman M.A.S., Dawson J. et al. In vivo measurement of colonic butyrate metabolism in patients with quiescent ulcerative colitis. Gut 2000; 46: 73-77.

287. Slomiany A., Grabska M., Slomiany B.L. Essential components of antimicrobial gastrointestinal epithelial barrier: specific interaction of mucinwith an integral apical membrane protein of gastric mucosa. Mol Med 2001; 7: 1-10.

288. Stein J., Zores M., Schroder O. Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism. Eur J Nutr 2000; 39: 121-125.

289. Steinhart A.H. Induction of remission in ulcerative colitis. In: Satsangi J., Sutherland L.R. (eds). Inflammatory bowel diseases. Churchill Livingstone; 2003: 383-401.

290. Steinhart A.H., Brzezinski A., Baker J.P. Treatment of refractory ulcerative proctosigmoiditis with butyrate enemas. Am J Gastroenterol 1994; 89:179-183.

291. Steinhart A.H., Hiruki T., Brzezinski A., Baker J.P. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment Pharmacol Ther 1996; 10: 729-736.

292. Stephen A.M., Cummigs J.H. Mechanism of action of dietary fibre in the human colon. Nature 1980; 284: 283-284.

293. Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358: 135-138.

294. Stumpf D.A., Mc Afee J., Parks J.K., Egmen L. Propionate inhibition of succinate: CoA ligase (GDP) and the citric acid cycle in mitochondria. PedRes 1980; 14: 1127-1131.

295. Sturm A., Dignass A.U. Modulation of gastrointestinal wound repair and inflammation by phospholipids. Biochim Biophys Acta 2002; 1582: 282-288.

296. Suau A., Bonnet R., Sutren M., et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65: 4799-4807.

297. Sutherland L.R., Martin F., Greer S. et al. 5-aminosalicylic acid enema in the treatment of distal ulcerative colitis, proctosigmoiditis, and proctitis. Gastroenterology 1987; 92: 1894-1898.

298. Swidsinski A., Ladhoff A., Pernthaler A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122: 44-54.

299. Tannock G.W. Molecular assessment of intestinal microflora. Am J Clin Nutr 2001; 73: S410-S414.

300. Tannock G.W. Molecular methods for exploring the intestinal ecosystem. Br J Nutr 2002; 87: S199-S201.

301. Tazume S., Takeshi K., Saidi M. et al. Ecological studies on intestinal microbial flora of Kenyan children with diarrhoea. J Trop Med Hyg 1990; 93:215-221.

302. Thillainayagam A.V., Hunt J.B., Farthing MJ.G. Enhancing clinical efficacy of oral rehydration therapy: is low osmolarity the key? Gastroenterology 1998; 114: 197-210.

303. Thirlby R.C., Kelly R. Pectin and methyl cellulose do not affect intestinal function in patients after ileal pouch-anal anastomosis. Am J Gastroenterol 1997; 92: 99-102.

304. Todesco T., Rao A.V., Bosello O., Jenkins D.J.A. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr 1991; 54: 860-865.

305. Tomlin J., Read N.W. The effect of resistant starch on colon function in humans. Br J Nutr 1990; 64: 589-595.

306. Tremaine W., Sandborn W., Phillips S. Short chain fatty acid enema therapy for treatment resistant pouchitis following ileal pouch-anal anastomosis for ulcerative colitis. Gastroenterology 1994; 106: A 784.

307. Trivedi K., Barrett K.E., Resta-Lenert S.C. Probiotic inhibition of the entry of enteroinvasive E.coli into human intestinal epithelial cells involves both Rho-dependent and independent pathways. Gastroenterology 2003; 124: A 106.

308. Truelove S.C., Witts L.J. Cortisone in ulcerative colitis. Final report on a therapeutic trial. Br Med J 1955; 2: 1041-1048.

309. Tytgat K.M., van der Wal J.W., Einerhand A.W. et al. Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochem Biophys Res Commun 1996; 224: 397-405.

310. Ulisse S., Gionchetti P., D'Alo S., et al. Expression of cytikines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am J Gastroenterol 2001; 96: 2691-2699.

311. Van de Merwe J.P., Schroder A.M., Wensinck F., et al. The obligate anaerobic faecal flora of patients with Crohn's disease and their first-degree relatives. Scand J Gastroenterol 1988; 23: 1125-1131.

312. Van de Merwe J.P., Stegeman J.H., Hazenberg M.P. The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn's disease? Antonie Van Laeuwenhoek 1983; 49: 119-124.

313. Velazquez O.C., Lederer H.M., Rombeau J.L. Butyrate and the colonocyte. Implications for neoplasia. DigDis Sci 1996; 41: 727-739.

314. Velazquez O.C., Lederer H.M., Rombeau J.L. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997; 427: 123-134.

315. Veltkamp C., Tonkonogy S.L., De Jong Y.P., et al. Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg (epsilon 26) mice. Gastroenterology 2001; 120: 900-913.

316. Venter C.S., Vorster H.H., Cummings J.H. Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 1990; 85: 549-553.

317. Venturi A., Gionchetti P., Rizzello F., et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 1999; 13: 1103-1108.

318. Venugopalakrishnan J., Tyagi S., Ramaswamy K., Dudeja P.K. Mechanism of n-butyrate transport across the human colonic basolateral membrane. Gastroenterology 1999; 116: A 941.

319. Vernia P., Cittadini M., Caprilli R., Torsoli A. Topical treatment of refractory distal ulcerative colitis with 5-ASA and sodium butyrate. Dig Dis Sci 1995; 40 (2): 305-307.

320. Vernia P., Fracasso P.L., Casale V. et al. Topical butyrate for acute radiation proctitis: randomized, crossover study. Lancet 2000; 356: 12321235.

321. Vernia P., Gnaedinger A., Hauck W., Breuer R.I. Organic anions and the diarrhea of inflammatory bowel disease. Dig Dis Sci 1988; 33: 13531358.

322. Vernia P., Marcheggiano A., Caprilli R. et al. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 1995; 9:309-313.

323. Vernia P., Monteleone G., Grandinetti G. et al. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis. Dig Dis Sci 2000; 45: 976-981.

324. Videla S., Vilaseca J., Antolin M. et al. Dietary inulin improves distal colitis induced by dextran sodium sulphate in the rat. Am J Gastroenterol 2001; 96: 1486-1493.

325. Von Engelhardt W., Bartels J., Kirschberger S. et al. Role of short-chain fatty acids in the hind gut. Vet Q 1998; 20 (suppl 3): S52-59.

326. Von Engelhardt W., Gros G., Burmester M. et al. Functional role of bicarbonate in propionate transport across guinea-pig isolated caecum and proximal colon. J Physiol (Lond) 1994; 477: 365-371.

327. Waidmann M., Bechtold O., Frick J.S., et al. Bacteroides vulgatus protects against Escherichia coli induced colitis in gnotobiotic interleukin-2 deficient mice. Gastroenterology 2003; 125: 162-177.

328. Weaver G.A., Tangel C.T., Krause J.A. et al. Acarbose enhances human colonic butyrate production. J Nutr 1997; 127 (5): 717-723.

329. Wedzicha B.L. Chemistry of sulphur dioxide in foods. London and New York: Elsevier Applied Science Publishers; 1984.

330. Weglarz L., Dzierzewicz Z., Orchel A. et al. Biological activity of Desulfovibrio desulfuricans lipopolysaccharides evaluated via interleukin-8 secretion by Caco-2 cells. Scand J Gastroenterol 2003; 1: 73-79.

331. Welters C.F., Heineman E., Thunnissen F.B. et al. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum 2002; 45: 621-627.

332. Wensinck F., Custers-van L., Poppelaars-Kustermans P.A., et al. The faecal flora of patients with Crohn's disease. J Hyg (Lond) 1981; 87: 1-12.

333. Willemsen L.E., Schreurs C.C., Kroes H. et al. A coculture model mimicking the intestinal mucosa reveals a regulatory role for myofibroblasts in immune-mediated barrier disruption. Dig Dis Sei 2002; 47: 2316-2324.

334. Williams N.N., Branigan A., Fitzpatrick J.M., O'Connell P.R. Glutamine and butyric acid metabolism in biopsy specimens (in vivo): a method of assessing treatment on inflammatory bowel conditions. Gastroenterology 1992; 102: A 713.

335. Williams D.L., Spray G.H., Hems R., Williamson D.H. Metabolic effects of propionate in normal and vitamin B12 -deficient rats. Biochem J 1971; 124: 501-507.

336. Williams B.A., Versiegen M.W.A., Tamminga S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 2001; 14: 207-227.

337. Williamson J.R., Martin-Reguero A., Corkey B.E. et al. Interactions between alpha-ketoisovaleriate, propionate and fatty acids on gluconeogenesis and ureogenesis in isolated hepatocytes. Dev Biochem 1981; 18: 105-117.

338. Wilson K.H., Blitchington R.B. Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 1996; 62: 22732278.

339. Wilson K.H., Ikeda J.S., Blitchington R.B. Phylogenetic placement of cimmunity members of human colonic biota. Clin Infect Dis 1997; 25: S111-S116.

340. Windmueller H.G., Spaeth A.E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for post-absorptive rat small intestine. J Biol Chem 1978; 253: 69-76.

341. Wischmeyer P., Pemberton J.H., Phillips S.F. Chronic pouchitis after ileal pouch-anal anastomosis: responses to butyrate and glutamine suppositories in a pilot study. Mayo Clinic Proc 1993; 68: 978-981.

342. Wolever T.H.S., Spadafora P., Eshuis H. Interaction between colonic acetate and propionate in man. Am J Clin Nutr 1991; 53: 681-687.

343. Wolfe R.R., Jahoor F. Recovery of labeled C02 during the infusion of C-l- vs C-2-labeled acetate: implications for tracer studies of substrate oxidation. Am J Clin Nutr 1990; 51: 248-252.

344. Wolin M.J. Control of short chain volatile acid production in the colon. In: Binder H.J., Cummings J., Soergel K. (eds). Short chain fatty acid. Kluwer Academic Publichers; 1994: 3-10.

345. Yan F., Polk D.B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 2002; 277: 50959-50965.

346. Young G.P., Gibson P.R. Butyrate and the human cancer cell. In: Cummings J.J., Rombeau J.L., Sakata T. (eds). Physiologic and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press; 1995:319-336.1. U-J Q

347. Zopf D., Rath S. Oligosaccharide anti-infective agents. Lancet 1996; 347: 1017-1021.